An Evaluation System for the Contact Electrification of a Single Microparticle Using Microelectromechanical-Based Actuated Tweezers

Sensors (Basel). 2018 Jun 5;18(6):1835. doi: 10.3390/s18061835.

Abstract

The image quality of laser and multi-function printers that make use of electrophotography depends on the amount of surface charge generated by contact electrification on the toner particles. However, because it has been impossible to experimentally evaluate such amounts under controlled contact conditions using macroscopic measurements, theoretical elucidation of the contact electrification mechanism has not progressed sufficiently. In the present study, we have developed a system to experimentally evaluate the contact electrification of a single particle using atomic force microscopy (AFM) and nanotweezers (microelectromechanical systems (MEMS)-based actuated tweezers). This system performs, in succession, (i) a contact test that makes use of the nanotweezers and three piezoelectric stages, and (ii) an image force measurement using the AFM cantilever. Using this system, contact electrification was evaluated under controlled conditions, such as the contact number and the indentation depth. In addition, differences in contact electrification due to the amount of external surface additives were investigated. The results reveal that a coating with external additives leads to a decrease in the amount of contact electrification due to a reduction in the contact area with the substrate.

Keywords: cantilever; contact electrification; manipulation; nanotweezers; single particle.