Flexible Sensorimotor Computations through Rapid Reconfiguration of Cortical Dynamics

Neuron. 2018 Jun 6;98(5):1005-1019.e5. doi: 10.1016/j.neuron.2018.05.020.


Neural mechanisms that support flexible sensorimotor computations are not well understood. In a dynamical system whose state is determined by interactions among neurons, computations can be rapidly reconfigured by controlling the system's inputs and initial conditions. To investigate whether the brain employs such control mechanisms, we recorded from the dorsomedial frontal cortex of monkeys trained to measure and produce time intervals in two sensorimotor contexts. The geometry of neural trajectories during the production epoch was consistent with a mechanism wherein the measured interval and sensorimotor context exerted control over cortical dynamics by adjusting the system's initial condition and input, respectively. These adjustments, in turn, set the speed at which activity evolved in the production epoch, allowing the animal to flexibly produce different time intervals. These results provide evidence that the language of dynamical systems can be used to parsimoniously link brain activity to sensorimotor computations.

Keywords: Dynamical Systems; cognitive flexibility; electrophysiology; frontal cortex; motor planning; population coding; recurrent neural networks; sensorimotor coordination; timing.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cerebral Cortex / physiology
  • Cognition
  • Electroencephalography
  • Female
  • Frontal Lobe / physiology*
  • Macaca mulatta
  • Male
  • Neural Networks, Computer
  • Neurons / physiology*
  • Sensorimotor Cortex / physiology*
  • Systems Analysis
  • Task Performance and Analysis
  • Time Factors