Genetic dissection of stress-induced reproductive arrest in Drosophila melanogaster females
- PMID: 29889831
- PMCID: PMC5995346
- DOI: 10.1371/journal.pgen.1007434
Genetic dissection of stress-induced reproductive arrest in Drosophila melanogaster females
Abstract
By genetic manipulations, we study the roles played by insulin-producing cells (IPCs) in the brain and their target, the corpora allata (CA), for reproductive dormancy in female Drosophila melanogaster, which is induced by exposing them to a combination of low temperature (11°C), short-day photoperiod (10L:14D) and starvation (water only) for 7 days immediately after eclosion (dormancy-inducing conditions). Artificial inactivation of IPCs promotes, whereas artificial activation impedes, the induction of reproductive dormancy. A transcriptional reporter assay reveals that the IPC activity is reduced when the female flies are exposed to dormancy-inducing conditions. The photoperiod sensitivity of reproductive dormancy is lost in pigment-dispersing factor (pdf), but not cry, mutants, suggesting that light input to IPCs is mediated by pdf-expressing neurons. Genetic manipulations to upregulate and downregulate insulin signaling in the CA, a pair of endocrine organs that synthesize the juvenile hormone (JH), decrease and increase the incidence of reproductive dormancy, respectively. These results demonstrate that the IPC-CA axis constitutes a key regulatory pathway for reproductive dormancy.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
Similar articles
-
Female reproductive dormancy in Drosophila is regulated by DH31-producing neurons projecting into the corpus allatum.Development. 2023 May 15;150(10):dev201186. doi: 10.1242/dev.201186. Epub 2023 May 23. Development. 2023. PMID: 37218457 Free PMC article.
-
Mutations in insulin signaling pathway alter juvenile hormone synthesis in Drosophila melanogaster.Gen Comp Endocrinol. 2005 Jul;142(3):347-56. doi: 10.1016/j.ygcen.2005.02.009. Epub 2005 Mar 17. Gen Comp Endocrinol. 2005. PMID: 15935161
-
Peptidergic signaling from clock neurons regulates reproductive dormancy in Drosophila melanogaster.PLoS Genet. 2019 Jun 13;15(6):e1008158. doi: 10.1371/journal.pgen.1008158. eCollection 2019 Jun. PLoS Genet. 2019. PMID: 31194738 Free PMC article.
-
Juvenile hormone regulation of Drosophila aging.BMC Biol. 2013 Jul 17;11:85. doi: 10.1186/1741-7007-11-85. BMC Biol. 2013. PMID: 23866071 Free PMC article.
-
The role of insulin signalling in the endocrine stress response in Drosophila melanogaster: A mini-review.Gen Comp Endocrinol. 2018 Mar 1;258:134-139. doi: 10.1016/j.ygcen.2017.05.019. Epub 2017 May 26. Gen Comp Endocrinol. 2018. PMID: 28554733 Review.
Cited by
-
Neural mechanism of circadian clock-based photoperiodism in insects and snails.J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023 Aug 18. doi: 10.1007/s00359-023-01662-6. Online ahead of print. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023. PMID: 37596422 Review.
-
The circadian and photoperiodic clock of the pea aphid.J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023 Jul 24. doi: 10.1007/s00359-023-01660-8. Online ahead of print. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023. PMID: 37482577 Review.
-
Pigment-dispersing factor is present in circadian clock neurons of pea aphids and may mediate photoperiodic signalling to insulin-producing cells.Open Biol. 2023 Jun;13(6):230090. doi: 10.1098/rsob.230090. Epub 2023 Jun 28. Open Biol. 2023. PMID: 37369351 Free PMC article.
-
Drosophila ezoana uses morning and evening oscillators to adjust its rhythmic activity to different daylengths but only the morning oscillator to measure night length for photoperiodic responses.J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023 Jun 17. doi: 10.1007/s00359-023-01646-6. Online ahead of print. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2023. PMID: 37329349
-
Female reproductive dormancy in Drosophila is regulated by DH31-producing neurons projecting into the corpus allatum.Development. 2023 May 15;150(10):dev201186. doi: 10.1242/dev.201186. Epub 2023 May 23. Development. 2023. PMID: 37218457 Free PMC article.
References
-
- Emerson KJ, Bradshaw WE, Holzapfel CM. Complications of complexity: integrating environmental, genetic and hormonal control of insect diapause. Tr Genet. 2009;25: 217–225. doi: 10.1016/j.tig.2009.03.009 - DOI - PubMed
-
- Hand SC, Denlinger DL, Podrabsky JE, Roy R. Mechanisms of animal diapause: recent developments from nematodes, crustaceans, insects, and fish. Am J Physiol Regul Integr Comp Physiol. 2016;310: R1193–R1211. doi: 10.1152/ajpregu.00250.2015 - DOI - PMC - PubMed
-
- Schiesari L, O'Connor MB. Diapause: delaying the developmental clock in response to a changing environment. Curr Top Dev Biol. 2013;105, 213–246. doi: 10.1016/B978-0-12-396968-2.00008-7 - DOI - PubMed
-
- Izumi Y, Sonoda S, Tsumuki H. Effects of diapause and cold-acclimation on the avoidance of freezing injury in fat body tissue of the rice stem borer, Chilo suppressalis Walker. J Insect Physiol. 2007;53: 685–690. doi: 10.1016/j.jinsphys.2007.04.005 - DOI - PubMed
-
- Sato Y, Oguchi M, Menjo N, Imai K, Saito H, Ikeda M, Isobe M, Yamashita O. Precursor polyprotein for multiple neuropeptides secreted from the suboesophageal ganglion of the silkworm Bombyx mori: characterization of the cDNA encoding the diapause hormone precursor and identification of additional peptides. Proc Natl Acad Sci USA. 1993;90: 3251–3255. doi: 10.1073/pnas.90.8.3251 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
