Selective manipulation of electronically excited states through strong light-matter interactions

Nat Commun. 2018 Jun 11;9(1):2273. doi: 10.1038/s41467-018-04736-1.


Strong coupling between light and matter leads to the spontaneous formation of hybrid light-matter states, having different energies than the uncoupled states. This opens up for new ways of modifying the energy landscape of molecules without changing their atoms or structure. Heavy metal-free organic light emitting diodes (OLED) use reversed intersystem crossing (RISC) to harvest light from excited triplet states. This is a slow process, thus increasing the rate of RISC could potentially enhance OLED performance. Here we demonstrate selective coupling of the excited singlet state of Erythrosine B without perturbing the energy level of a nearby triplet state. The coupling reduces the triplet-singlet energy gap, leading to a four-time enhancement of the triplet decay rate, most likely due to an enhanced rate of RISC. Furthermore, we anticipate that strong coupling can be used to create energy-inverted molecular systems having a singlet ground and lowest excited state.

Publication types

  • Research Support, Non-U.S. Gov't