FOXA2 promotes the proliferation, migration and invasion, and epithelial mesenchymal transition in colon cancer

Exp Ther Med. 2018 Jul;16(1):133-140. doi: 10.3892/etm.2018.6157. Epub 2018 May 11.

Abstract

The present study determined the expression and biological functions of FOXA2 gene in colon cancer in tissues, cells and animals. A total of 66 patients with colon cancer were included in the present study. Using The Human Protein Atlas database, expression and distribution of FOXA2 in colon cancer tissues were analyzed. Using immunohistochemistry, the expression and distribution of FOXA2 in colon cancer cells were studied. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to determine the expression of FOXA2 mRNA in colon cancer tissues. Following in vitro transfection with FOXA2 interference sequence (siR-FOXA2), the proliferation, cell cycle, migration and invasion of colon cancer HCT116 and HT29 cells were investigated using Cell Counting Kit-8 assay, flow cytometry, and Transwell assay, respectively. Furthermore, flow cytometry was used to determine apoptosis of HCT116 and HT29 cells. Western blotting was used to determine the expression of epithelial mesenchymal transition (EMT) proteins, E-Cadherin and Vimentin. Laser scanning confocal microscopy was performed to observe the cytoskeleton in HCT116 and HT29 cells. Results indicated tumorigenesis of colon cancer cells in nude mice. In addition, the expression of FOXA2 in colon cancer tissues was elevated and associated with the metastasis and clinical staging of colon cancer. Notably, inhibition of FOXA2 reduced the proliferation of colon cancer cells in vitro and reduced expression of FOXA2 was able to decrease the migration and invasion abilities of colon cancer cells. Furthermore, FOXA2 promoted EMT, inhibited apoptosis and enhanced the invasion ability of colon cancer cells. Decreased expression of FOXA2 inhibited tumorigenesis of colon cancer cells in nude mice. To conclude, the present study demonstrated that the expression of FOXA2 in colon cancer tissues was elevated and associated with the metastasis and clinical staging of colon cancer. As an oncogene, FOXA2 may promote the proliferation, migration and invasion and EMT in colon cancer.

Keywords: FOXA2; colon cancer; epithelial mesenchymal transition; invasion; migration; oncogene; proliferation.