Cellular dynamics of conjugation in the ciliate euplotes aediculatus. I. Cytoskeletal elements

J Morphol. 1987 Apr;192(1):27-42. doi: 10.1002/jmor.1051920104.


The fate and possible roles of the cytoskeleton in the process of conjugation in the hyptrich ciliate Euplotes aediculatus were investigated. Following the coalescence of the plasma membranes of the conjugant cells, a fusion zone or bridge of cytoplasm contributed by both partners is constructed. The sub-alveolar microtubule layers of the vegetative cell cortex remain in place to define the fusion zone boundaries after cell union. The initial fusion zone consists primarily of featureless ground cytoplasm; soon the ground plasm becomes crowded with microtubules and anastomosing smooth endoplasmic reticulum, which become displaced only late in conjugation as the migratory pronuclei are exchanged between partners. Fusion zone microtubules, functioning in some undetermined way, may be involved in the nuclear migration. Resorption of the posterior portion of each partner's buccal apparatus results in the degradation of the component cilia within acid phosphatase-positive autophagic bodies. Silver staining for light microscopy shows that the late fusion zone contracts forward from the posterior border, then constricts to separate the conjugants. In some separating pairs remnants of a microfilamentous assembly are seen at the posterior edge of the fusion zone; the full extent of this system may be masked by partial degradation due to osmium tetroxide fixation. Treatment of conjugants for 6 hours with cytochalasin B prevents separation, possibly through inhibition of the actin-like microfilament assembly in the fusion zone. The observations and experiments favor a model of cell separation following conjugation in which the fusion zone is resorbed by motile or contractile processes occurring within or around the fusion bridge itself.