Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jun 15;18(1):117.
doi: 10.1186/s12872-018-0842-0.

Temporarily increased stroke rate after Takotsubo syndrome: need for an anticoagulation?

Affiliations
Free PMC article

Temporarily increased stroke rate after Takotsubo syndrome: need for an anticoagulation?

Nadine Abanador-Kamper et al. BMC Cardiovasc Disord. .
Free PMC article

Abstract

Background: Previous studies have reported slightly higher stroke rates in Takotsubo Syndrome compared to acute myocardial infarction. Our goal was to evaluate the temporal course of stroke rates and left ventricular recovery in patients with Takotsubo Syndrome.

Methods: We retrospectively examined the clinical and imaging data of 72 patients with Takotsubo Syndrome. The data collected came from January 2005 to March 2017. Left ventricular performance was evaluated by cardiovascular magnetic resonance imaging (MRI) in all patients during the acute phase of Takotsubo Syndrome and in a follow-up scan 2 months later. Acute stroke and major adverse clinical events, such as myocardial infarction or recurrence of Takotsubo Syndrome and death, were also determined for each patient at 30 days and 12 months after initial presentation.

Results: The MRI scans performed during the acute phase of Takotsubo Syndrome demonstrated apical ballooning with anterior wall motion dysfunction in 65 (90%) patients. Imaging performed 2 months later demonstrated resolution of this in 97% of those patients. Median left ventricular ejection fraction also significantly increased between both scans (49.5% vs. 64.0%, P < 0.001). We observed 9 (12%) events in the study population within 12 months of the initial diagnosis of Takotsubo Syndrome. Stroke had an event rate of 2.8% after 30 days and 4.2% after 12 months.

Conclusions: Apical ballooning was found in the majority of our Takotsubo Syndrome patients on the MRI scans performed at presentation. This finding was subsequently associated with higher than expected stroke rates within 30 days of diagnosis and with rapid recovery of left ventricular function within 2 months of diagnosis. This suggests that rapid improvement in left ventricular morphology and function may facilitate the formation of cardiac emboli and consequently increase stroke rates in Takotsubo Syndrome. Although no guidelines currently exist for the treatment of Takotsubo Syndrome, these results may point to a potential role for temporary oral anticoagulation in high-risk patients. Future studies should examine if stroke rates after Takotsubo Syndrome have been underestimated.

Keywords: Cardiovascular magnetic resonance imaging; Stroke event; Takotsubo syndrome.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

The ethics committee of University Witten/Herdecke approved this study and patients gave written informed consent.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Cardiovascular magnetic resonance imaging of a patient with apical ballooning due to Takotsubo Syndrome. Apical left ventricular thrombus formation (asterisks) in the end-systolic two-chamber view (a) and four-chamber view (b). Inversion recovery sequence shows a lack of Late Gadolinium Enhancement in the myocardial tissue (c) and confirms thrombus in the sequence with long inversion time (d)
Fig. 2
Fig. 2
Diffusion-weighted brain MRI of patient who had left ventricular thrombus formation. The scan demonstrates an ischemic stroke in the territory of the right middle cerebral artery

Comment in

Similar articles

Cited by

References

    1. Loh E, Sutton MS, Wun CC, Rouleau JL, Flaker GC, Gottlieb SS, et al. Ventricular dysfunction and the risk of stroke after myocardial infarction. N Engl J Med. 1997;336:251–257. doi: 10.1056/NEJM199701233360403. - DOI - PubMed
    1. Schneider B, Athanasiadis A, Schwab J, Pistner W, Gottwald U, Schoeller R, et al. Complications in the clinical course of tako-tsubo cardiomyopathy. Int J Cardiol. 2014;176:199–205. doi: 10.1016/j.ijcard.2014.07.002. - DOI - PubMed
    1. Templin C, Ghadri JR, Diekmann J, Napp LC, Bataiosu DR, Jaguszewski M, et al. Clinical features and outcomes of Takotsubo (stress) cardiomyopathy. N Engl J Med. 2015;373:929–938. doi: 10.1056/NEJMoa1406761. - DOI - PubMed
    1. Prasad A, Lerman A, Rihal CS. Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction. Am Heart J. 2008;155:408–417. doi: 10.1016/j.ahj.2007.11.008. - DOI - PubMed
    1. Aletras AH, Tilak GS, Natanzon A, Hsu L-Y, Gonzalez FM, Hoyt RF, et al. Retrospective determination of the area at risk for reperfused acute myocardial infarction with T2-weighted cardiac magnetic resonance imaging: histopathological and displacement encoding with stimulated echoes (DENSE) functional validations. Circulation. 2006;113:1865–1870. doi: 10.1161/CIRCULATIONAHA.105.576025. - DOI - PubMed

Publication types

MeSH terms