Complexity is much talked about but sub-optimally studied in health services research. Although the significance of the complex system as an analytic lens is increasingly recognised, many researchers are still using methods that assume a closed system in which predictive studies in general, and controlled experiments in particular, are possible and preferred. We argue that in open systems characterised by dynamically changing inter-relationships and tensions, conventional research designs predicated on linearity and predictability must be augmented by the study of how we can best deal with uncertainty, unpredictability and emergent causality. Accordingly, the study of complexity in health services and systems requires new standards of research quality, namely (for example) rich theorising, generative learning, and pragmatic adaptation to changing contexts. This framing of complexity-informed health services research provides a backdrop for a new collection of empirical studies. Each of the initial five papers in this collection illustrates, in different ways, the value of theoretically grounded, methodologically pluralistic, flexible and adaptive study designs. We propose an agenda for future research and invite researchers to contribute to this on-going series.
Keywords: Complexity; Healthcare; Methodology; Systems thinking.