Leishmania, microbiota and sand fly immunity
- PMID: 29921334
- PMCID: PMC6137379
- DOI: 10.1017/S0031182018001014
Leishmania, microbiota and sand fly immunity
Abstract
In this review, we explore the state-of-the-art of sand fly relationships with microbiota, viruses and Leishmania, with particular emphasis on the vector immune responses. Insect-borne diseases are a major public health problem in the world. Phlebotomine sand flies are proven vectors of several aetiological agents including viruses, bacteria and the trypanosomatid Leishmania, which are responsible for diseases such as viral encephalitis, bartonellosis and leishmaniasis, respectively. All metazoans in nature coexist intimately with a community of commensal microorganisms known as microbiota. The microbiota has a fundamental role in the induction, maturation and function of the host immune system, which can modulate host protection from pathogens and infectious diseases. We briefly review viruses of public health importance present in sand flies and revisit studies done on bacterial and fungal gut contents of these vectors. We bring this information into the context of sand fly development and immune responses. We highlight the immunity mechanisms that the insect utilizes to survive the potential threats involved in these interactions and discuss the recently discovered complex interactions among microbiota, sand fly, Leishmania and virus. Additionally, some of the alternative control strategies that could benefit from the current knowledge are considered.
Keywords: Leishmania; microbiota; sand fly; vector–microbe interaction; viruses.
Figures
Similar articles
-
Reactive oxygen species-mediated immunity against Leishmania mexicana and Serratia marcescens in the sand phlebotomine fly Lutzomyia longipalpis.J Biol Chem. 2012 Jul 6;287(28):23995-4003. doi: 10.1074/jbc.M112.376095. Epub 2012 May 29. J Biol Chem. 2012. PMID: 22645126 Free PMC article.
-
Colonisation resistance in the sand fly gut: Leishmania protects Lutzomyia longipalpis from bacterial infection.Parasit Vectors. 2014 Jul 23;7:329. doi: 10.1186/1756-3305-7-329. Parasit Vectors. 2014. PMID: 25051919 Free PMC article.
-
Phlebotomine sand fly-borne pathogens in the Mediterranean Basin: Human leishmaniasis and phlebovirus infections.PLoS Negl Trop Dis. 2017 Aug 10;11(8):e0005660. doi: 10.1371/journal.pntd.0005660. eCollection 2017 Aug. PLoS Negl Trop Dis. 2017. PMID: 28796786 Free PMC article. Review.
-
Aerobic midgut microbiota of sand fly vectors of zoonotic visceral leishmaniasis from northern Iran, a step toward finding potential paratransgenic candidates.Parasit Vectors. 2019 Jan 7;12(1):10. doi: 10.1186/s13071-018-3273-y. Parasit Vectors. 2019. PMID: 30616668 Free PMC article.
-
Sand fly saliva: effects on host immune response and Leishmania transmission.Folia Parasitol (Praha). 2006 Sep;53(3):161-71. Folia Parasitol (Praha). 2006. PMID: 17120496 Review.
Cited by
-
Evidence of a conserved mammalian immunosuppression mechanism in Lutzomyia longipalpis upon infection with Leishmania.Front Immunol. 2023 Nov 2;14:1162596. doi: 10.3389/fimmu.2023.1162596. eCollection 2023. Front Immunol. 2023. PMID: 38022562 Free PMC article.
-
Effects of host species on microbiota composition in Phlebotomus and Lutzomyia sand flies.Parasit Vectors. 2023 Aug 31;16(1):310. doi: 10.1186/s13071-023-05939-2. Parasit Vectors. 2023. PMID: 37653518 Free PMC article.
-
Blood meal analysis and molecular detection of mammalian Leishmania DNA in wild-caught Sergentomyia spp. from Tunisia and Saudi Arabia.Parasitol Res. 2023 Sep;122(9):2181-2191. doi: 10.1007/s00436-023-07919-y. Epub 2023 Jul 14. Parasitol Res. 2023. PMID: 37449994
-
RNAi-mediated gene silencing of Phlebotomus papatasi defensins favors Leishmania major infection.Front Physiol. 2023 May 9;14:1182141. doi: 10.3389/fphys.2023.1182141. eCollection 2023. Front Physiol. 2023. PMID: 37265840 Free PMC article.
-
Leishmania allelic selection during experimental sand fly infection correlates with mutational signatures of oxidative DNA damage.Proc Natl Acad Sci U S A. 2023 Mar 7;120(10):e2220828120. doi: 10.1073/pnas.2220828120. Epub 2023 Feb 27. Proc Natl Acad Sci U S A. 2023. PMID: 36848551 Free PMC article.
References
-
- Abrudan J, Ramalho-Ortigao M, O'Neil S, Stayback G, Wadsworth M, Bernard M, Shoue D, Emrich S, Lawyer P, Kamhawi S, Rowton ED, Lehane MJ, Bates PA, Valenzeula JG, Tomlinson C, Appelbaum E, Moeller D, Thiesing B, Dillon R, Clifton S, Lobo NF, Wilson RK, Collins FH and McDowell MA (2013) The characterization of the Phlebotomus papatasi transcriptome. Insect Molecular Biology 22, 211–232. - PMC - PubMed
-
- Afonso MM, Duarte R, Miranda JC, Caranha L and Rangel EF (2012) Studies on the feeding habits of Lutzomyia (Lutzomyia) longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae: Phlebotominae) populations from endemic areas of American visceral leishmaniasis in northeastern Brazil. The Journal of Tropical Medicine 2012, 858657. - PMC - PubMed
-
- Aguiar ER, Olmo RP, Paro S, Ferreira FV, de Faria IJ, Todjro YM, Lobo FP, Kroon EG, Meignin C, Gatherer D, Imler JL and Marques JT (2015) Sequence-independent characterization of viruses based on the pattern of viral small RNAs produced by the host. Nucleic Acids Research 43, 6191–6206. - PMC - PubMed
-
- Al-Beloshei NE, Al-Awadhi H, Al-Khalaf RA and Afzal M (2015) A comparative study of fatty acid profile and formation of biofilm in Geobacillus gargensis exposed to variable abiotic stress. Canadian Journal of Microbiology 61, 48–59. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
