α2δ-1 Is Essential for Sympathetic Output and NMDA Receptor Activity Potentiated by Angiotensin II in the Hypothalamus

J Neurosci. 2018 Jul 11;38(28):6388-6398. doi: 10.1523/JNEUROSCI.0447-18.2018. Epub 2018 Jun 19.

Abstract

Both the sympathetic nervous system and the renin-angiotensin system are critically involved in hypertension development. Although angiotensin II (Ang II) stimulates hypothalamic paraventricular nucleus (PVN) neurons to increase sympathetic vasomotor tone, the molecular mechanism mediating this action remains unclear. The glutamate NMDAR in the PVN controls sympathetic outflow in hypertension. In this study, we determined the interaction between α2δ-1 (encoded by Cacna2d1), commonly known as a Ca2+ channel subunit, and NMDARs in the hypothalamus and its role in Ang II-induced synaptic NMDAR activity in PVN presympathetic neurons. Coimmunoprecipitation assays showed that α2δ-1 interacted with the NMDAR in the hypothalamus of male rats and humans (both sexes). Ang II increased the prevalence of synaptic α2δ-1-NMDAR complexes in the hypothalamus. Also, Ang II increased presynaptic and postsynaptic NMDAR activity via AT1 receptors, and such effects were abolished either by treatment with pregabalin, an inhibitory α2δ-1 ligand, or by interrupting the α2δ-1-NMDAR interaction with an α2δ-1 C terminus-interfering peptide. In Cacna2d1 knock-out mice (both sexes), Ang II failed to affect the presynaptic and postsynaptic NMDAR activity of PVN neurons. In addition, the α2δ-1 C terminus-interfering peptide blocked the sympathoexcitatory response to microinjection of Ang II into the PVN. Our findings indicate that Ang II augments sympathetic vasomotor tone and excitatory glutamatergic input to PVN presympathetic neurons by stimulating α2δ-1-bound NMDARs at synapses. This information extends our understanding of the molecular basis for the interaction between the sympathetic nervous and renin-angiotensin systems and suggests new strategies for treating neurogenic hypertension.SIGNIFICANCE STATEMENT Although both the sympathetic nervous system and renin-angiotensin system are closely involved in hypertension development, the molecular mechanisms mediating this involvement remain unclear. We showed that α2δ-1, previously known as a calcium channel subunit, interacts with NMDARs in the hypothalamus of rodents and humans. Angiotensin II (Ang II) increases the synaptic expression level of α2δ-1-NMDAR complexes. Furthermore, inhibiting α2δ-1, interrupting the α2δ-1-NMDAR interaction, or deleting α2δ-1 abolishes the potentiating effects of Ang II on presynaptic and postsynaptic NMDAR activity in the hypothalamus. In addition, the sympathoexcitatory response to Ang II depends on α2δ-1-bound NMDARs. Thus, α2δ-1-NMDAR complexes in the hypothalamus serve as an important molecular substrate for the interaction between the sympathetic nervous system and the renin-angiotensin system. This evidence suggests that α2δ-1 may be a useful target for the treatment neurogenic hypertension.

Keywords: autonomic nervous system; gabapentin; gabapentinoids; presynaptic NMDA receptor synapse; synaptic plasticity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Angiotensin II / metabolism*
  • Angiotensin II / pharmacology
  • Animals
  • Calcium Channels / metabolism*
  • Female
  • Humans
  • Hypertension / physiopathology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Paraventricular Hypothalamic Nucleus / drug effects
  • Paraventricular Hypothalamic Nucleus / metabolism*
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, N-Methyl-D-Aspartate / metabolism*
  • Renin-Angiotensin System / physiology*
  • Sympathetic Nervous System / physiology*

Substances

  • Calcium Channels
  • Receptors, N-Methyl-D-Aspartate
  • Angiotensin II