Morphological and topographical appearance of microaneurysms on optical coherence tomography angiography

Br J Ophthalmol. 2018 Jun 20:bjophthalmol-2018-312258. doi: 10.1136/bjophthalmol-2018-312258. Online ahead of print.

Abstract

Aims: To investigate retinal microaneurysms in patients with diabetic macular oedema (DME) by optical coherence tomography angiography (OCTA) according to their location and morphology in relationship to their clinical properties, leakage on fundus fluorescein angiography (FFA) and retinal thickening on structural OCT.

Methods: OCTA and FFA images of 31 eyes of 24 subjects were graded for the presence of microaneurysms. The topographical and morphological appearance of microaneurysms on OCTA was evaluated and classified. For each microaneurysm, the presence of focal leakage on FFA and associated retinal thickening on OCT was determined.

Results: Of all microaneurysms flagged on FFA, 295 out of 513 (58%) were also visible on OCTA. Microaneurysms with focal leakage and located in a thickened retinal area were more likely to be detected on OCTA than not leaking microaneurysms in non-thickened retinal areas (p=0.001). Most microaneurysms on OCTA were seen in the intermediate (23%) and deep capillary plexus (22%). Of all microaneurysms visualised on OCTA, saccular microaneurysms were detected most often (31%), as opposed to pedunculated microaneurysms (9%). Irregular, fusiform and mixed fusiform/saccular-shaped microaneurysms had the highest likeliness to leak and to be located in thickened retinal areas (p<0.001, p<0.001 and p=0.001).

Conclusions: Retinal microaneurysms in DME could be classified topographically and morphologically by OCTA. OCTA detected less microaneurysms than FFA, and this appeared to be dependent on leakage activity and retinal thickening. Morphological appearance of microaneurysms (irregular, fusiform and mixed saccular/fusiform) was associated with increased leakage activity and retinal thickening.

Keywords: diabetic macularoedema; fluorescein angiography; image analysis; microaneurysms; optical coherence tomography angiography.