Optimized Cholesterol-siRNA Chemistry Improves Productive Loading onto Extracellular Vesicles

Mol Ther. 2018 Aug 1;26(8):1973-1982. doi: 10.1016/j.ymthe.2018.05.024. Epub 2018 Jun 21.


Extracellular vesicles are promising delivery vesicles for therapeutic RNAs. Small interfering RNA (siRNA) conjugation to cholesterol enables efficient and reproducible loading of extracellular vesicles with the therapeutic cargo. siRNAs are typically chemically modified to fit an application. However, siRNA chemical modification pattern has not been specifically optimized for extracellular vesicle-mediated delivery. Here we used cholesterol-conjugated, hydrophobically modified asymmetric siRNAs (hsiRNAs) to evaluate the effect of backbone, 5'-phosphate, and linker chemical modifications on productive hsiRNA loading onto extracellular vesicles. hsiRNAs with a combination of 5'-(E)-vinylphosphonate and alternating 2'-fluoro and 2'-O-methyl backbone modifications outperformed previously used partially modified siRNAs in extracellular vesicle-mediated Huntingtin silencing in neurons. Between two commercially available linkers (triethyl glycol [TEG] and 2-aminobutyl-1-3-propanediol [C7]) widely used to attach cholesterol to siRNAs, TEG is preferred compared to C7 for productive exosomal loading. Destabilization of the linker completely abolished silencing activity of loaded extracellular vesicles. The loading of cholesterol-conjugated siRNAs was saturated at ∼3,000 siRNA copies per extracellular vesicle. Overloading impaired the silencing activity of extracellular vesicles. The data reported here provide an optimization scheme for the successful use of hydrophobic modification as a strategy for productive loading of RNA cargo onto extracellular vesicles.

Keywords: RNA therapy; chemical modification; exosomes; extracellular vesicles; nanovesicles; oligonucleotides; siRNA.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cells, Cultured
  • Cholesterol / chemistry*
  • Extracellular Vesicles / chemistry*
  • Humans
  • Huntingtin Protein / genetics*
  • Mice
  • Mutation
  • Propylene Glycols / chemistry
  • RNA, Small Interfering / chemistry*


  • HTT protein, human
  • Huntingtin Protein
  • Propylene Glycols
  • RNA, Small Interfering
  • Cholesterol