Exercise unmasks distinct pathophysiologic features in heart failure with preserved ejection fraction and pulmonary vascular disease

Eur Heart J. 2018 Aug 7;39(30):2825-2835. doi: 10.1093/eurheartj/ehy331.

Abstract

Aims: Pulmonary hypertension (PH) and pulmonary vascular disease (PVD) are common and associated with adverse outcomes in heart failure with preserved ejection fraction (HFpEF). Little is known about the impact of PVD on the pathophysiology of exercise intolerance.

Methods and results: Heart failure with preserved ejection fraction patients (n = 161) with elevated pulmonary capillary wedge pressure (≥15 mmHg) at rest were classified into three groups: non-PH-HFpEF (n = 21); PH but no PVD (isolated post-capillary PH, IpcPH; n = 95); and PH with PVD (combined post- and pre-capillary PH, CpcPH; n = 45). At rest, CpcPH-HFpEF patients had more right ventricular (RV) dysfunction and lower pulmonary arterial (PA) compliance compared to all other groups. While right atrial pressure (RAP) and left ventricular transmural pressure (LVTMP) were similar in HFpEF with and without PH or PVD at rest, CpcPH-HFpEF patients demonstrated greater increase in RAP, enhanced ventricular interdependence, and paradoxical reduction in LVTMP during exercise, differing from all other groups (P < 0.05). Lower PA compliance was correlated with greater increase in RAP with exercise. During exercise, CpcPH-HFpEF patients displayed an inability to enhance cardiac output, reduction in forward stroke volume, and blunted augmentation in RV systolic performance, changes that were coupled with marked limitation in aerobic capacity.

Conclusion: Heart failure with preserved ejection fraction patients with PVD demonstrate unique haemodynamic limitations during exercise that constrain aerobic capacity, including impaired recruitment of LV preload due to excessive right heart congestion and blunted RV systolic reserve. Interventions targeted to this distinct pathophysiology require testing in patients with HFpEF and PVD.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Exercise Test*
  • Female
  • Heart Failure / complications*
  • Heart Failure / physiopathology*
  • Humans
  • Male
  • Pulmonary Artery*
  • Pulmonary Veins*
  • Stroke Volume*
  • Vascular Diseases / etiology*