The dynamics of extracellular signal-regulated kinase (ERK) signaling underlies its versatile functions in cell differentiation, cell proliferation, and cell motility. Classical studies in Drosophila established that a gradient of epidermal growth factor receptor (EGFR)-ERK signaling is essential for these cellular responses. However, we challenge this view by the real-time monitoring of ERK activation; we show that a switch-like ERK activation is essential for the invagination movement of the Drosophila tracheal placode. This switch-like ERK activation stems from the positive feedback regulation of the EGFR-ERK signaling and a resultant relay of EGFR-ERK signaling among tracheal cells. A key transcription factor Trachealess (Trh) permissively regulates the iteration of the relay, and the ERK activation becomes graded in trh mutant. A mathematical model based on these observations and a molecular link between ERK activation dynamics and myosin shows that the relay mechanism efficiently promotes epithelial invagination while the gradient mechanism does not.
Keywords: Drosophila; EGF receptor; ERK signaling; FRET; invagination; mathematical modeling; morphogenesis; trachea.
Copyright © 2018 Elsevier Inc. All rights reserved.