Positional specificity of different transcription factor classes within enhancers

Proc Natl Acad Sci U S A. 2018 Jul 24;115(30):E7222-E7230. doi: 10.1073/pnas.1804663115. Epub 2018 Jul 9.

Abstract

Gene expression is controlled by sequence-specific transcription factors (TFs), which bind to regulatory sequences in DNA. TF binding occurs in nucleosome-depleted regions of DNA (NDRs), which generally encompass regions with lengths similar to those protected by nucleosomes. However, less is known about where within these regions specific TFs tend to be found. Here, we characterize the positional bias of inferred binding sites for 103 TFs within ∼500,000 NDRs across 47 cell types. We find that distinct classes of TFs display different binding preferences: Some tend to have binding sites toward the edges, some toward the center, and some at other positions within the NDR. These patterns are highly consistent across cell types, suggesting that they may reflect TF-specific intrinsic structural or functional characteristics. In particular, TF classes with binding sites at NDR edges are enriched for those known to interact with histones and chromatin remodelers, whereas TFs with central enrichment interact with other TFs and cofactors such as p300. Our results suggest distinct regiospecific binding patterns and functions of TF classes within enhancers.

Keywords: chromatin structure; gene regulation; genomics; transcription factor binding.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Gene Expression Regulation / physiology*
  • Humans
  • Jurkat Cells
  • Response Elements / physiology*
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*
  • U937 Cells

Substances

  • Transcription Factors