Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Sep;22(5):1434-1444.
doi: 10.1109/JBHI.2017.2771768. Epub 2017 Nov 10.

Real-Time Multilead Convolutional Neural Network for Myocardial Infarction Detection

Real-Time Multilead Convolutional Neural Network for Myocardial Infarction Detection

Wenhan Liu et al. IEEE J Biomed Health Inform. 2018 Sep.

Abstract

In this paper, a novel algorithm based on a convolutional neural network (CNN) is proposed for myocardial infarction detection via multilead electrocardiogram (ECG). A beat segmentation algorithm utilizing multilead ECG is designed to obtain multilead beats, and fuzzy information granulation is adopted for preprocessing. Then, the beats are input into our multilead-CNN (ML-CNN), a novel model that includes sub two-dimensional (2-D) convolutional layers and lead asymmetric pooling (LAP) layers. As different leads represent various angles of the same heart, LAP can capture multiscale features of different leads, exploiting the individual characteristics of each lead. In addition, sub 2-D convolution can utilize the holistic characters of all the leads. It uses 1-D kernels shared among the different leads to generate local optimal features. These strategies make the ML-CNN suitable for multilead ECG processing. To evaluate our algorithm, actual ECG datasets from the PTB diagnostic database are used. The sensitivity of our algorithm is 95.40%, the specificity is 97.37%, and the accuracy is 96.00% in the experiments. Targeting lightweight mobile healthcare applications, real-time analyses are performed on both MATLAB and ARM Cortex-A9 platforms. The average processing times for each heartbeat are approximately 17.10 and 26.75 ms, respectively, which indicate that this method has good potential for mobile healthcare applications.

PubMed Disclaimer

Similar articles

Cited by

Publication types