Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Aug;65(8):1359-1369.
doi: 10.1109/TUFFC.2018.2839714. Epub 2018 May 23.

Computer-Aided Theragnosis Based on Tumor Volumetric Information in Breast Cancer

Computer-Aided Theragnosis Based on Tumor Volumetric Information in Breast Cancer

Mehrdad J Gangeh et al. IEEE Trans Ultrason Ferroelectr Freq Control. .


Objective: A computer-assisted technology has recently been proposed for the assessment of therapeutic responses to neoadjuvant chemotherapy in patients with locally advanced breast cancer (LABC). The system, however, extracted features from individual scans in a tumor irrespective of its relation to the other scans of the same patient, ignoring the volumetric information. This study addresses this problem by introducing a novel engineered texton-based method in order to account for volumetric information in the design of textural descriptors to represent tumor scans.

Methods: A noninvasive computer-aided-theragnosis (CAT) system was developed by employing multiparametric QUS spectral and backscatter coefficient maps. The proceeding was composed of two subdictionaries: one built on the "pretreatment" and another on "week " scans, where was 1, 4, or 8. The learned dictionary of each patient was subsequently used to compute the model (histogram of textons) for each scan of the patient. Advanced machine learning techniques including a kernel-based dissimilarity measure to estimate the distances between "pretreatment" and "mid-treatment" scans as an indication of treatment effectiveness, learning from imbalanced data, and supervised learning were subsequently employed on the texton-based features.

Results: The performance of the CAT system was tested using statistical tests of significance and leave-one-subject-out (LOSO) classification on 56 LABC patients. The proposed texton-based CAT system indicated significant differences in changes between the responding and nonresponding patient populations and achieved high accuracy, sensitivity, and specificity in discriminating between the two patient groups early after the start of treatment, i.e., on weeks 1 and 4 of several months of treatment. Specifically, the CAT system achieved the area under curve of 0.81, 0.83, and 0.85 on weeks 1, 4, and 8, respectively.

Conclusion: The proposed texton-based CAT system accounted for the volumetric information in "pretreatment" and "mid-treatment" scans of each patient. It was demonstrated that this attribute of the CAT system could boost its performance compared to the cases that the features were extracted from solely individual scans.

Similar articles

See all similar articles

Publication types

Grant support