Impact of age on the development of fatigue during large and small muscle mass exercise

Am J Physiol Regul Integr Comp Physiol. 2018 Oct 1;315(4):R741-R750. doi: 10.1152/ajpregu.00156.2018. Epub 2018 Jul 11.

Abstract

To examine the impact of aging on neuromuscular fatigue following cycling (CYC; large active muscle mass) and single-leg knee-extension (KE; small active muscle mass) exercise, 8 young (25 ± 4 years) and older (72 ± 6 years) participants performed CYC and KE to task failure at a given relative intensity (80% of peak power output). The young also matched CYC and KE workload and duration of the old (iso-work comparison). Peripheral and central fatigue were quantified via pre-/postexercise decreases in quadriceps twitch torque (∆Qtw, electrical femoral nerve stimulation) and voluntary activation (∆VA). Although young performed 77% and 33% more work during CYC and KE, respectively, time to task failure in both modalities was similar to the old (~9.5 min; P > 0.2). The resulting ΔQtw was also similar between groups (CYC ~40%, KE ~55%; P > 0.3); however, ∆VA was, in both modalities, approximately double in the young (CYC ~6%, KE ~9%; P < 0.05). While causing substantial peripheral and central fatigue in both exercise modalities in the old, ∆Qtw in the iso-work comparison was not significant (CYC; P = 0.2), or ~50% lower (KE; P < 0.05) in the young, with no central fatigue in either modality ( P > 0.4). Based on iso-work comparisons, healthy aging impairs fatigue resistance during aerobic exercise. Furthermore, comparisons of fatigue following exercise at a given relative intensity mask the age-related difference observed following exercise performed at the same workload. Finally, although active muscle mass has little influence on the age-related difference in the rate of fatigue at a given relative intensity, it substantially impacts the comparison during exercise at a given absolute intensity.

Keywords: aerobic exercise; aging; corticospinal excitability; neuromuscular fatigue.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural

MeSH terms

  • Adult
  • Age Factors
  • Aged
  • Bicycling
  • Electric Stimulation / methods
  • Electromyography
  • Evoked Potentials, Motor
  • Exercise*
  • Femoral Nerve / physiology*
  • Humans
  • Male
  • Muscle Contraction*
  • Muscle Fatigue*
  • Muscle Strength*
  • Pyramidal Tracts / physiology*
  • Quadriceps Muscle / innervation*
  • Reaction Time
  • Time Factors
  • Torque
  • Transcranial Magnetic Stimulation
  • Young Adult