A similarity-based approach to leverage multi-cohort medical data on the diagnosis and prognosis of Alzheimer's disease

Gigascience. 2018 Jul 1;7(7):giy085. doi: 10.1093/gigascience/giy085.

Abstract

Motivation: Heterogeneous diseases such as Alzheimer's disease (AD) manifest a variety of phenotypes among populations. Early diagnosis and effective treatment offer cost benefits. Many studies on biochemical and imaging markers have shown potential promise in improving diagnosis, yet establishing quantitative diagnostic criteria for ancillary tests remains challenging.

Results: We have developed a similarity-based approach that matches individuals to subjects with similar conditions. We modeled the disease with a Gaussian process, and tested the method in the Alzheimer's Disease Big Data DREAM Challenge. Ranked the highest among submitted methods, our diagnostic model predicted cognitive impairment scores in an independent dataset test with a correlation score of 0.573. It differentiated AD patients from control subjects with an area under the receiver operating curve of 0.920. Without knowing longitudinal information about subjects, the model predicted patients who are vulnerable to conversion from mild-cognitive impairment to AD through the similarity network. This diagnostic framework can be applied to other diseases with clinical heterogeneity, such as Parkinson's disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Algorithms
  • Alzheimer Disease / diagnosis*
  • Alzheimer Disease / genetics*
  • Biomarkers
  • Cognition Disorders / diagnosis
  • Cognitive Dysfunction / diagnosis
  • Cohort Studies
  • Diagnosis, Computer-Assisted
  • Disease Progression
  • Humans
  • Machine Learning
  • Magnetic Resonance Imaging
  • Medical Informatics / methods*
  • Normal Distribution
  • Parkinson Disease / diagnosis
  • Phenotype
  • Principal Component Analysis
  • Prognosis
  • ROC Curve
  • Sensitivity and Specificity

Substances

  • Biomarkers