Unlike humans and other mammals, adult zebrafish have the superior capability to recover from central nervous system (CNS) injury. We previously found that proliferation of radial glia (RG) is induced in response to stab injury in optic tectum and that new neurons are generated from RG after stab injury. However, molecular mechanisms which regulate proliferation and differentiation of RG are not well known. In the present study, we investigated Shh and Notch signaling as potential mechanisms regulating regeneration in the optic tectum of adult zebrafish. We used Shh reporter fish and confirmed that canonical Shh signaling is activated specifically in RG after stab injury. Moreover, we have shown that Shh signaling promotes RG proliferation and suppresses their differentiation into neurons after stab injury. In contrast, Notch signaling was down-regulated after stab injury, indicated by the decrease in the expression level of her4 and her6, a target gene of Notch signaling. We also found that inhibition of Notch signaling after stab injury induced more proliferative RG, but that inhibition of Notch signaling inhibited generation of newborn neurons from RG after stab injury. These results suggest that high level of Notch signaling keeps RG quiescent and that appropriate level of Notch signaling is required for generation of newborn neurons from RG. Under physiological condition, activation of Shh signaling or inhibition of Notch signaling also induced RG proliferation. In adult optic tectum of zebrafish, canonical Shh signaling and Notch signaling play important roles in proliferation and differentiation of RG in physiological and regenerative conditions.
Keywords: RRID: AB_10000325; RRID: AB_143165; RRID: AB_2160651; RRID: AB_221448; RRID: AB_2534069; RRID: AB_2534079; RRID: AB_2534083; RRID: AB_2534091; RRID: AB_2536183; RRID: AB_302659; RRID: AB_591823; neurogenesis; notch signal; regeneration; sonic hedgehog signal; zebrafish.
© 2018 Wiley Periodicals, Inc.