A network of a few hundred neurons in the Drosophila central complex carries an estimate of the fly's heading in the world, akin to the mammalian head-direction system. Here we describe how anatomically defined neuronal classes in this network are poised to implement specific sub-processes for building and updating this population-level heading signal. The computations we describe in the fly central complex strongly resemble those posited to exist in the mammalian brain, in computational models for building head-direction signals. By linking circuit anatomy to navigational physiology, the Drosophila central complex should provide a detailed example of how a heading signal is built.
Copyright © 2018. Published by Elsevier Ltd.