Pharmacovigilance from social media: An improved random subspace method for identifying adverse drug events

Int J Med Inform. 2018 Sep:117:33-43. doi: 10.1016/j.ijmedinf.2018.06.008. Epub 2018 Jun 18.

Abstract

Objective: Recent advances in Web 2.0 technologies have seen significant strides towards utilizing patient-generated content for pharmacovigilance. Social media-based pharmacovigilance has great potential to augment current efforts and provide regulatory authorities with valuable decision aids. Among various pharmacovigilance activities, identifying adverse drug events (ADEs) is very important for patient safety. However, in health-related discussion forums, ADEs may confound with drug indications and beneficial effects, etc. Therefore, the focus of this study is to develop a strategy to identify ADEs from other semantic types, and meanwhile to determine the drug that an ADE is associated with.

Materials and methods: In this study, two groups of features, i.e., shallow linguistic features and semantic features, are explored. Moreover, motivated and inspired by the characteristics of explored two feature categories for social media-based ADE identification, an improved random subspace method, called Stratified Sampling-based Random Subspace (SSRS), is proposed. Unlike conventional random subspace method that applies random sampling for subspace selection, SSRS adopts stratified sampling-based subspace selection strategy.

Results: A case study on heart disease discussion forums is performed to evaluate the effectiveness of the SSRS method. Experimental results reveal that the proposed SSRS method significantly outperforms other compared ensemble methods and existing approaches for ADE identification.

Discussion and conclusion: Our proposed method is easy to implement since it is based on two feature sets that can be naturally derived, and therefore, can omit artificial stratum generation efforts. Moreover, SSRS has great potential of being applied to deal with other high-dimensional problems that can represent original data from two different aspects.

Keywords: Adverse drug event identification; Random subspace; Social media; Stratified sampling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adverse Drug Reaction Reporting Systems*
  • Decision Support Techniques
  • Heart Diseases / drug therapy
  • Humans
  • Pharmacovigilance*
  • Semantics
  • Social Media*