A Dual-Accelerometer System for Classifying Physical Activity in Children and Adults

Med Sci Sports Exerc. 2018 Dec;50(12):2595-2602. doi: 10.1249/MSS.0000000000001717.


Introduction: Accurately monitoring 24-h movement behaviors is a vital step for progressing the time-use epidemiology field. Past accelerometer-based measurement protocols are either hindered by lack of wear time compliance, or the inability to accurately discern activities and postures. Recent work has indicated that skin-attached dual-accelerometers exhibit excellent 24-h uninterrupted wear time compliance. This study extends this work by validating this system for classifying various physical activities and sedentary behaviors in children and adults.

Methods: Seventy-five participants (42 children) were equipped with two Axivity AX3 accelerometers; one attached to their thigh, and one to their lower back. Ten activity trials (e.g., sitting, standing, lying, walking, running) were performed while under direct observation in a lab setting. Various time- and frequency-domain features were computed from raw accelerometer data, which were then used to train a random forest machine learning classifier. Model performance was evaluated using leave-one-out cross-validation. The efficacy of the dual-sensor protocol (relative to single sensors) was evaluated by repeating the modeling process with each sensor individually.

Results: Machine learning models were able to differentiate between six distinct activity classes with exceptionally high accuracy in both adults (99.1%) and children (97.3%). When a single thigh or back accelerometer was used, there was a pronounced drop in accuracy for nonambulatory activities (up to a 26.4% decline). When examining the features used for model training, those that took the orientation of both sensors into account concurrently were more important predictors.

Conclusions: When previous wear time compliance results are taken together with our findings, it represents a promising step forward for monitoring and understanding 24-h time-use behaviors. The next step will be to examine the generalizability of these findings in a free-living setting.

MeSH terms

  • Accelerometry / instrumentation
  • Accelerometry / methods*
  • Adolescent
  • Adult
  • Back
  • Child
  • Exercise*
  • Female
  • Humans
  • Machine Learning*
  • Male
  • Middle Aged
  • Models, Theoretical
  • Sedentary Behavior
  • Thigh