Ischemic-Reperfusion Injury Increases Matrix Metalloproteinases and Tissue Metalloproteinase Inhibitors in Fetal Sheep Brain

Dev Neurosci. 2018;40(3):234-245. doi: 10.1159/000489700. Epub 2018 Jul 26.


Hypoxic-ischemic brain injury is a leading cause of neurodevelopmental morbidities in preterm and full-term infants. Blood-brain barrier dysfunction represents an important component of perinatal hypoxic-ischemic brain injury. The extracellular matrix (ECM) is a vital component of the blood-brain barrier. Matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinases (TIMPs) are important ECM components. They contribute to brain development, blood-brain barrier maintenance, and to regenerative and repair processes after hypoxic-ischemic brain injury. We hypothesized that ischemia at different durations of reperfusion affects the ECM protein composition of MMPs and TIMPs in the cerebral cortex of fetal sheep. Cerebral cortical samples were snap-frozen from sham control fetuses at 127 days of gestation and from fetuses after exposure to 30-min carotid occlusion and 4-, 24-, and 48-h of reperfusion. Protein expression of MMP-2, -8, -9, and -13 and TIMP-1, -2, -3, and -4 was measured by Western immunoblotting along with the gelatinolytic activity of MMP-2 and MMP-9 by zymography. The expression of MMP-8 was increased (Kruskal-Wallis, p = 0.04) in fetuses 48 h after ischemia. In contrast, changes were not observed in the protein expression of MMP-2, -9, or -13. The gelatinolytic activity of pro-MMP-2 was increased (ANOVA, p = 0.02, Tukey HSD, p = 0.05) 24 h after ischemia. TIMP-1 and -3 expression levels were also higher (TIMP-1, ANOVA, p = 0.003, Tukey HSD, p = 0.01; TIMP-3, ANOVA, p = 0.006, Tukey HSD, p = 0.01) 24 h after ischemia compared with both the sham controls and with fetuses exposed to 4 h of reperfusion. The changes in the expression of TIMP-1, -2, and -3 correlated with the changes in the MMP-8 and -13 protein expression. We speculate that regulation of MMP-8, MMP-13, and TIMPs contributes to ECM remodeling after is chemic-reperfusion injury in the fetal brain.

Keywords: Brain; Fetus; Ischemia-reperfusion injury; Matrix metalloproteinases; Sheep; TIMPs.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Brain / metabolism*
  • Matrix Metalloproteinase Inhibitors / metabolism*
  • Matrix Metalloproteinases / metabolism*
  • Reperfusion Injury / enzymology*
  • Reperfusion Injury / pathology
  • Sheep


  • Matrix Metalloproteinase Inhibitors
  • Matrix Metalloproteinases