Genetic Architecture and Candidate Genes Detected for Chicken Internal Organ Weight With a 600 K Single Nucleotide Polymorphism Array

Asian-Australas J Anim Sci. 2019 Mar;32(3):341-349. doi: 10.5713/ajas.18.0274. Epub 2018 Jul 26.

Abstract

Objective: Internal organs indirectly affect economic performance and well-being of animals. Study of internal organs during later layer period will allow full utilization of layer hens. Hence, we conducted a genome-wide association study (GWAS) to identify potential quantitative trait loci or genes that potentially contribute to internal organ weight.

Methods: A total of 1,512 chickens originating from White Leghorn and Dongxiang Blue-Shelled chickens were genotyped using high-density Affymetrix 600 K single nucleotide polymorphism (SNP) array. We conducted a GWAS, linkage disequilibrium analysis, and heritability estimated based on SNP information by using GEMMA, Haploview and GCTA software.

Results: Our results displayed that internal organ weights show moderate to high (0.283 to 0.640) heritability. Variance partitioned across chromosomes and chromosome lengths had a linear relationship for liver weight and gizzard weight (R2 = 0.493, 0.753). A total of 23 highly significant SNPs that associated with all internal organ weights were mainly located on Gallus gallus autosome (GGA) 1 and GGA4. Six SNPs on GGA2 affected heart weight. After the final analysis, five top SNPs were in or near genes 5-Hydroxytryptamine receptor 2A, general transcription factor IIF polypeptide 2, WD repeat and FYVE domain containing 2, non-SMC condensin I complex subunit G, and sonic hedgehog, which were considered as candidate genes having a pervasive role in internal organ weights.

Conclusion: Our findings provide an understanding of the underlying genetic architecture of internal organs and are beneficial in the selection of chickens.

Keywords: Chicken; Fitness Trait; Genome-wide Association Study; Internal Organ; Quantitative Trait.