Toward Excellent Tribological Performance as Oil-Based Lubricant Additive: Particular Tribological Behavior of Fluorinated Graphene

ACS Appl Mater Interfaces. 2018 Aug 29;10(34):28828-28838. doi: 10.1021/acsami.8b07635. Epub 2018 Aug 15.

Abstract

The poor dispersibility, strong interlayer interaction, and inferior crack resistance ability restrict the employment of graphene as a lubricant additive. Herein, we prepared fluorinated graphene with different F/C ratios by direct fluorination of multilayer graphene utilizing F2. Among them, highly fluorinated graphene (HFG) with an F/C ratio of about 1.0 presented prominent thermal stability and excellent tribological performance as an oil-based lubricant additive, whose friction coefficient and wear rate had a 51.4 and 90.9% decrease compared to that of pristine graphene, respectively. It was confirmed that C-F bonds perpendicular to the graphene plane contributed to increasing the interlayer distance and tribological performance of fluorinated graphene, while the randomly oriented CF2 and CF3 groups did not count as influential, as demonstrated via X-ray diffraction, X-ray photoelectron spectroscopy, and polarized attenuated total reflection-Fourier transform infrared spectroscopy. Meanwhile, Raman measurements traced the formation process of integrated and stable HFG tribofilm during friction process, and the corresponding stability was attributed to the physical and chemical interactions between HFG and friction pairs. More interestingly, the outstanding crack resistance ability of HFG preserved the sheet structure from destruction due to decreased in-plane stiffness and out-plane stress, thus constructing the tough tribofilm. The simple and feasible preparation makes HFG a promising candidate as advanced lubricant in industrial fabrication.

Keywords: fluorinated graphene; perpendicular C−F bonds; stable tribofilm; tough tribofilm; tribological performance.