Blended Smoking Cessation Treatment: Exploring Measurement, Levels, and Predictors of Adherence

J Med Internet Res. 2018 Aug 1;20(8):e246. doi: 10.2196/jmir.9969.


Background: Blended face-to-face and Web-based treatment is a promising way to deliver cognitive behavioral therapy. Since adherence has been shown to be a measure for treatment's acceptability and a determinant for treatment's effectiveness, in this study, we explored adherence to a new blended smoking cessation treatment (BSCT).

Objective: The objective of our study was to (1) develop an adequate method to measure adherence to BSCT; (2) define an adequate degree of adherence to be used as a threshold for being adherent; (3) estimate adherence to BSCT; and (4) explore the possible predictors of adherence to BSCT.

Methods: The data of patients (N=75) were analyzed to trace adherence to BSCT delivered at an outpatient smoking cessation clinic. In total, 18 patient activities (eg, using a Web-based smoking diary tool or responding to counselors' messages) were selected to measure adherence; the degree of adherence per patient was compared with quitting success. The minimum degree of adherence of patients who reported abstinence was examined to define a threshold for the detection of adherent patients. The number of adherent patients was calculated for each of the 18 selected activities; the degree of adherence over the course of the treatment was displayed; and the number of patients who were adherent was analyzed. The relationship between adherence and 33 person-, smoking-, and health-related characteristics was examined.

Results: The method for measuring adherence was found to be adequate as adherence to BSCT correlated with self-reported abstinence (P=.03). Patients reporting abstinence adhered to at least 61% of BSCT. Adherence declined over the course of the treatment; the percentage of adherent patients per treatment activity ranged from 82% at the start of the treatment to 11%-19% at the final-third of BSCT; applying a 61% threshold, 18% of the patients were classified as adherent. Marital status and social modeling were the best independent predictors of adherence. Patients having a partner had 11-times higher odds of being adherent (OR [odds ratio]=11.3; CI: 1.33-98.99; P=.03). For social modeling, graded from 0 (=partner and friends are not smoking) to 8 (=both partner and nearly all friends are smoking), each unit increase was associated with 28% lower odds of being adherent (OR=0.72; CI: 0.55-0.94; P=.02).

Conclusions: The current study is the first to explore adherence to a blended face-to-face and Web-based treatment (BSCT) based on a substantial group of patients. It revealed a rather low adherence rate to BSCT. The method for measuring adherence to BSCT could be considered adequate because the expected dose-response relationship between adherence and quitting could be verified. Furthermore, this study revealed that marital status and social modeling were independent predictors of adherence.

Trial registration: Netherlands Trial Registry NTR5113; (Archived by WebCite at

Keywords: adherence; blended treatment; cognitive behavioral therapy; predictors; prevention; smoking; tobacco.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cognitive Behavioral Therapy / methods*
  • Female
  • Humans
  • Internet
  • Male
  • Smoking Cessation / methods*