Emotion Recognition Based on Weighted Fusion Strategy of Multichannel Physiological Signals
- PMID: 30073024
- PMCID: PMC6057426
- DOI: 10.1155/2018/5296523
Emotion Recognition Based on Weighted Fusion Strategy of Multichannel Physiological Signals
Abstract
Emotion recognition is an important pattern recognition problem that has inspired researchers for several areas. Various data from humans for emotion recognition have been developed, including visual, audio, and physiological signals data. This paper proposes a decision-level weight fusion strategy for emotion recognition in multichannel physiological signals. Firstly, we selected four kinds of physiological signals, including Electroencephalography (EEG), Electrocardiogram (ECG), Respiration Amplitude (RA), and Galvanic Skin Response (GSR). And various analysis domains have been used in physiological emotion features extraction. Secondly, we adopt feedback strategy for weight definition, according to recognition rate of each emotion of each physiological signal based on Support Vector Machine (SVM) classifier independently. Finally, we introduce weight in decision level by linear fusing weight matrix with classification result of each SVM classifier. The experiments on the MAHNOB-HCI database show the highest accuracy. The results also provide evidence and suggest a way for further developing a more specialized emotion recognition system based on multichannel data using weight fusion strategy.
Figures
Similar articles
-
Reliable emotion recognition system based on dynamic adaptive fusion of forehead biopotentials and physiological signals.Comput Methods Programs Biomed. 2015 Nov;122(2):149-64. doi: 10.1016/j.cmpb.2015.07.006. Epub 2015 Jul 29. Comput Methods Programs Biomed. 2015. PMID: 26253158
-
Subject-independent emotion recognition based on physiological signals: a three-stage decision method.BMC Med Inform Decis Mak. 2017 Dec 20;17(Suppl 3):167. doi: 10.1186/s12911-017-0562-x. BMC Med Inform Decis Mak. 2017. PMID: 29297324 Free PMC article.
-
Emotion recognition from single-channel EEG signals using a two-stage correlation and instantaneous frequency-based filtering method.Comput Methods Programs Biomed. 2019 May;173:157-165. doi: 10.1016/j.cmpb.2019.03.015. Epub 2019 Mar 22. Comput Methods Programs Biomed. 2019. PMID: 31046991
-
Multimodal fusion framework: a multiresolution approach for emotion classification and recognition from physiological signals.Neuroimage. 2014 Nov 15;102 Pt 1:162-72. doi: 10.1016/j.neuroimage.2013.11.007. Epub 2013 Nov 20. Neuroimage. 2014. PMID: 24269801 Review.
-
Emotion recognition from physiological signals.J Med Eng Technol. 2011 Aug-Oct;35(6-7):300-7. doi: 10.3109/03091902.2011.601784. J Med Eng Technol. 2011. PMID: 21936746 Review.
Cited by
-
Incorporation of the emotional indicators of the patient journey into healthcare organization management.Health Expect. 2023 Feb;26(1):297-306. doi: 10.1111/hex.13656. Epub 2022 Nov 6. Health Expect. 2023. PMID: 36335577 Free PMC article.
-
Emotion Recognition: Photoplethysmography and Electrocardiography in Comparison.Biosensors (Basel). 2022 Sep 30;12(10):811. doi: 10.3390/bios12100811. Biosensors (Basel). 2022. PMID: 36290948 Free PMC article.
-
Using Facial Micro-Expressions in Combination With EEG and Physiological Signals for Emotion Recognition.Front Psychol. 2022 Jun 28;13:864047. doi: 10.3389/fpsyg.2022.864047. eCollection 2022. Front Psychol. 2022. PMID: 35837650 Free PMC article.
-
Emotion Recognition Algorithm Application Financial Development and Economic Growth Status and Development Trend.Front Psychol. 2022 Feb 28;13:856409. doi: 10.3389/fpsyg.2022.856409. eCollection 2022. Front Psychol. 2022. PMID: 35295376 Free PMC article.
-
Application of Electroencephalography-Based Machine Learning in Emotion Recognition: A Review.Front Syst Neurosci. 2021 Nov 23;15:729707. doi: 10.3389/fnsys.2021.729707. eCollection 2021. Front Syst Neurosci. 2021. PMID: 34887732 Free PMC article. Review.
References
-
- Cavallo F., Semeraro F., Fiorini L., Magyar G., Sinčák P., Dario P. Emotion Modelling for Social Robotics Applications: A Review. Journal of Bionic Engineering. 2018;15(2):185–203. doi: 10.1007/s42235-018-0015-y. - DOI
-
- Tojo T., Ono O., Noh N. B., Yusof R. Interactive Tutor Robot for Collaborative e-Learning System. Electrical Engineering in Japan. 2018;203(3):22–29. doi: 10.1002/eej.23073. - DOI
-
- Basiri M., Schill F., U.Lima P., Floreano D. Localization of emergency acoustic sources by micro aerial vehicles. Journal of Field Robotics. 2018;35(2):187–201. doi: 10.1002/rob.21733. - DOI
-
- Díez J. A., Blanco A., Catalán J. M., Badesa F. J., Lledó L. D., García-Aracil N. Hand exoskeleton for rehabilitation therapies with integrated optical force sensor. Advances in Mechanical Engineering. 2018;10(2):p. 168781401775388. doi: 10.1177/1687814017753881. - DOI
-
- You L. Z., Zhang S. D., D Zhu L. Bed-chair integration-new developing trend of helpage assistive robot. Proceedings of the 5th International Conference on Machinery, Materials Science and Engineering Applications; 2016; pp. 371–376.
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
