The PA3177 Gene Encodes an Active Diguanylate Cyclase That Contributes to Biofilm Antimicrobial Tolerance but Not Biofilm Formation by Pseudomonas aeruginosa
- PMID: 30082282
- PMCID: PMC6153807
- DOI: 10.1128/AAC.01049-18
The PA3177 Gene Encodes an Active Diguanylate Cyclase That Contributes to Biofilm Antimicrobial Tolerance but Not Biofilm Formation by Pseudomonas aeruginosa
Abstract
A hallmark of biofilms is their heightened resistance to antimicrobial agents. Recent findings suggested a role for bis-(3'-5')-cyclic dimeric GMP (c-di-GMP) in the susceptibility of bacteria to antimicrobial agents; however, no c-di-GMP modulating enzyme(s) contributing to the drug tolerance phenotype of biofilms has been identified. The goal of this study was to determine whether c-di-GMP modulating enzyme(s) specifically contributes to the biofilm drug tolerance of Pseudomonas aeruginosa Using transcriptome sequencing combined with biofilm susceptibility assays, we identified PA3177 encoding a probable diguanylate cyclase. PA3177 was confirmed to be an active diguanylate cyclase, with overexpression affecting swimming and swarming motility, and inactivation affecting cellular c-di-GMP levels of biofilm but not planktonic cells. Inactivation of PA3177 rendered P. aeruginosa PAO1 biofilms susceptible to tobramycin and hydrogen peroxide. Inactivation of PA3177 also eliminated the recalcitrance of biofilms to killing by tobramycin, with multicopy expression of PA3177 but not PA3177_GGAAF harboring substitutions in the active site, restoring tolerance to wild-type levels. Susceptibility was linked to BrlR, a previously described transcriptional regulator contributing to biofilm tolerance, with inactivation of PA3177 negatively impacting BrlR levels and BrlR-DNA binding. While PA3177 contributed to biofilm drug tolerance, inactivation of PA3177 had no effect on attachment and biofilm formation. Our findings demonstrate for the first time that biofilm drug tolerance by P. aeruginosa is linked to a specific c-di-GMP modulating enzyme, PA3177, with the pool of PA3177-generated c-di-GMP only contributing to biofilm drug tolerance but not to biofilm formation.
Keywords: BrlR; EMSA; PA3177; biofilm drug tolerance; biofilm susceptibility; c-di-GMP; diguanylate cyclase; immunoblot.
Copyright © 2018 American Society for Microbiology.
Figures
Similar articles
-
The ABC of Biofilm Drug Tolerance: the MerR-Like Regulator BrlR Is an Activator of ABC Transport Systems, with PA1874-77 Contributing to the Tolerance of Pseudomonas aeruginosa Biofilms to Tobramycin.Antimicrob Agents Chemother. 2018 Jan 25;62(2):e01981-17. doi: 10.1128/AAC.01981-17. Print 2018 Feb. Antimicrob Agents Chemother. 2018. PMID: 29180529 Free PMC article.
-
The Diguanylate Cyclase YfiN of Pseudomonas aeruginosa Regulates Biofilm Maintenance in Response to Peroxide.J Bacteriol. 2022 Jan 18;204(1):e0039621. doi: 10.1128/JB.00396-21. Epub 2021 Oct 25. J Bacteriol. 2022. PMID: 34694901 Free PMC article.
-
Antimicrobial tolerance of Pseudomonas aeruginosa biofilms is activated during an early developmental stage and requires the two-component hybrid SagS.J Bacteriol. 2013 Nov;195(21):4975-87. doi: 10.1128/JB.00732-13. Epub 2013 Aug 30. J Bacteriol. 2013. PMID: 23995639 Free PMC article.
-
Bacterial diguanylate cyclases: structure, function and mechanism in exopolysaccharide biofilm development.Biotechnol Adv. 2015 Jan-Feb;33(1):124-141. doi: 10.1016/j.biotechadv.2014.11.010. Epub 2014 Dec 10. Biotechnol Adv. 2015. PMID: 25499693 Review.
-
Matrix exopolysaccharides; the sticky side of biofilm formation.FEMS Microbiol Lett. 2017 Jul 6;364(13):fnx120. doi: 10.1093/femsle/fnx120. FEMS Microbiol Lett. 2017. PMID: 28605431 Free PMC article. Review.
Cited by
-
Nanotechnology-Based Drug Delivery Systems to Control Bacterial-Biofilm-Associated Lung Infections.Pharmaceutics. 2023 Nov 3;15(11):2582. doi: 10.3390/pharmaceutics15112582. Pharmaceutics. 2023. PMID: 38004561 Free PMC article. Review.
-
Bacterial respiratory inhibition triggers dispersal of Pseudomonas aeruginosa biofilms.Appl Environ Microbiol. 2023 Oct 31;89(10):e0110123. doi: 10.1128/aem.01101-23. Epub 2023 Sep 20. Appl Environ Microbiol. 2023. PMID: 37728340 Free PMC article.
-
Light-Based Anti-Biofilm and Antibacterial Strategies.Pharmaceutics. 2023 Aug 9;15(8):2106. doi: 10.3390/pharmaceutics15082106. Pharmaceutics. 2023. PMID: 37631320 Free PMC article. Review.
-
Challenges in using transcriptome data to study the c-di-GMP signaling network in Pseudomonas aeruginosa clinical isolates.FEMS Microbes. 2023 Jul 18;4:xtad012. doi: 10.1093/femsmc/xtad012. eCollection 2023. FEMS Microbes. 2023. PMID: 37564278 Free PMC article.
-
Genomic and Functional Characterization of Longitudinal Pseudomonas aeruginosa Isolates from Young Patients with Cystic Fibrosis.Microbiol Spectr. 2023 Aug 17;11(4):e0155623. doi: 10.1128/spectrum.01556-23. Epub 2023 Jun 26. Microbiol Spectr. 2023. PMID: 37358436 Free PMC article.
References
-
- Barraud N, Schleheck D, Klebensberger J, Webb JS, Hassett DJ, Rice SA, Kjelleberg S. 2009. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-GMP levels, and enhanced dispersal. J Bacteriol 191:7333–7342. doi:10.1128/JB.00975-09. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Miscellaneous
