SAMPL6: calculation of macroscopic pKa values from ab initio quantum mechanical free energies
- PMID: 30084080
- PMCID: PMC6240492
- DOI: 10.1007/s10822-018-0138-6
SAMPL6: calculation of macroscopic pKa values from ab initio quantum mechanical free energies
Abstract
Macroscopic pKa values were calculated for all compounds in the SAMPL6 blind prediction challenge, based on quantum chemical calculations with a continuum solvation model and a linear correction derived from a small training set. Microscopic pKa values were derived from the gas-phase free energy difference between protonated and deprotonated forms together with the Conductor-like Polarizable Continuum Solvation Model and the experimental solvation free energy of the proton. pH-dependent microstate free energies were obtained from the microscopic pKas with a maximum likelihood estimator and appropriately summed to yield macroscopic pKa values or microstate populations as function of pH. We assessed the accuracy of three approaches to calculate the microscopic pKas: direct use of the quantum mechanical free energy differences and correction of the direct values for short-comings in the QM solvation model with two different linear models that we independently derived from a small training set of 38 compounds with known pKa. The predictions that were corrected with the linear models had much better accuracy [root-mean-square error (RMSE) 2.04 and 1.95 pKa units] than the direct calculation (RMSE 3.74). Statistical measures indicate that some systematic errors remain, likely due to differences in the SAMPL6 data set and the small training set with respect to their interactions with water. Overall, the current approach provides a viable physics-based route to estimate macroscopic pKa values for novel compounds with reasonable accuracy.
Keywords: Quantum chemistry; SAMPL challenge; pH; pK a.
Figures
Similar articles
-
Absolute and relative pKa predictions via a DFT approach applied to the SAMPL6 blind challenge.J Comput Aided Mol Des. 2018 Oct;32(10):1179-1189. doi: 10.1007/s10822-018-0150-x. Epub 2018 Aug 20. J Comput Aided Mol Des. 2018. PMID: 30128926 Free PMC article.
-
High accuracy quantum-chemistry-based calculation and blind prediction of macroscopic pKa values in the context of the SAMPL6 challenge.J Comput Aided Mol Des. 2018 Oct;32(10):1139-1149. doi: 10.1007/s10822-018-0145-7. Epub 2018 Aug 23. J Comput Aided Mol Des. 2018. PMID: 30141103
-
Overview of the SAMPL6 pKa challenge: evaluating small molecule microscopic and macroscopic pKa predictions.J Comput Aided Mol Des. 2021 Feb;35(2):131-166. doi: 10.1007/s10822-020-00362-6. Epub 2021 Jan 4. J Comput Aided Mol Des. 2021. PMID: 33394238 Free PMC article.
-
Progress in ab initio QM/MM free-energy simulations of electrostatic energies in proteins: accelerated QM/MM studies of pKa, redox reactions and solvation free energies.J Phys Chem B. 2009 Feb 5;113(5):1253-72. doi: 10.1021/jp8071712. J Phys Chem B. 2009. PMID: 19055405 Free PMC article. Review.
-
The art of atom descriptor design.Drug Discov Today Technol. 2019 Dec;32-33:37-43. doi: 10.1016/j.ddtec.2020.06.004. Epub 2020 Jul 3. Drug Discov Today Technol. 2019. PMID: 33386093 Review.
Cited by
-
Thermodynamically consistent determination of free energies and rates in kinetic cycle models.Biophys Rep (N Y). 2023 Aug 2;3(3):100120. doi: 10.1016/j.bpr.2023.100120. eCollection 2023 Sep 13. Biophys Rep (N Y). 2023. PMID: 37638349 Free PMC article.
-
Quantum Mechanical Prediction of Dissociation Constants for Thiazol-2-imine Derivatives.J Chem Inf Model. 2023 May 22;63(10):2992-3004. doi: 10.1021/acs.jcim.2c01468. Epub 2023 May 1. J Chem Inf Model. 2023. PMID: 37126823 Free PMC article.
-
Thermodynamically consistent determination of free energies and rates in kinetic cycle models.bioRxiv [Preprint]. 2023 Aug 7:2023.04.08.536126. doi: 10.1101/2023.04.08.536126. bioRxiv. 2023. PMID: 37066357 Free PMC article. Updated. Preprint.
-
PROTACs bearing piperazine-containing linkers: what effect on their protonation state?RSC Adv. 2022 Aug 9;12(34):21968-21977. doi: 10.1039/d2ra03761k. eCollection 2022 Aug 4. RSC Adv. 2022. PMID: 36043064 Free PMC article.
-
Improving Small Molecule pK a Prediction Using Transfer Learning With Graph Neural Networks.Front Chem. 2022 May 26;10:866585. doi: 10.3389/fchem.2022.866585. eCollection 2022. Front Chem. 2022. PMID: 35721000 Free PMC article.
References
-
- Nicholls A, Mobley DL, Guthrie JP, Chodera JD, Bayly CI, Cooper MD, Pande VS (2008) Predicting small-molecule solvation free energies: An infor¬mal blind test for computational chemistry. J Med Chem 51(4):769–779, DOI 10.1021/jm070549+ - DOI - PubMed
-
- Guthrie JP (2009) A blind challenge for computational solvation free ener¬gies: Introduction and overview. J Phys Chem B 113(14):4501–4507, DOI 10.1021/jp806724u - DOI - PubMed
-
- Geballe MT, Skillman AG, Nicholls A, Guthrie JP, Taylor PJ (2010) The SAMPL2 blind prediction challenge: Introduction and overview. J Comput Aided Mol Des 24(4):259–279, DOI 10.1007/s10822-010-9350-8 - DOI - PubMed
-
- Geballe MT, Guthrie JP (2012) The SAMPL3 blind prediction challenge: transfer energy overview. J Comput Aided Mol Des 26(5):489–96, DOI 10.1007/s10822-012-9568-8 - DOI - PubMed
-
- Mobley DL, Wymer KL, Lim NM, Guthrie JP (2014) Blind prediction of solvation free energies from the SAMPL4 challenge. J Comput Aided Mol Des 28(3):135–50, DOI 10.1007/s10822-014-9718-2 - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
