Land-use emissions play a critical role in land-based mitigation for Paris climate targets
- PMID: 30087330
- PMCID: PMC6081380
- DOI: 10.1038/s41467-018-05340-z
Land-use emissions play a critical role in land-based mitigation for Paris climate targets
Abstract
Scenarios that limit global warming to below 2 °C by 2100 assume significant land-use change to support large-scale carbon dioxide (CO2) removal from the atmosphere by afforestation/reforestation, avoided deforestation, and Biomass Energy with Carbon Capture and Storage (BECCS). The more ambitious mitigation scenarios require even greater land area for mitigation and/or earlier adoption of CO2 removal strategies. Here we show that additional land-use change to meet a 1.5 °C climate change target could result in net losses of carbon from the land. The effectiveness of BECCS strongly depends on several assumptions related to the choice of biomass, the fate of initial above ground biomass, and the fossil-fuel emissions offset in the energy system. Depending on these factors, carbon removed from the atmosphere through BECCS could easily be offset by losses due to land-use change. If BECCS involves replacing high-carbon content ecosystems with crops, then forest-based mitigation could be more efficient for atmospheric CO2 removal than BECCS.
Conflict of interest statement
The authors declare no competing interests.
Figures
Similar articles
-
Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts.Glob Chang Biol. 2018 Jul;24(7):3025-3038. doi: 10.1111/gcb.14144. Epub 2018 Apr 16. Glob Chang Biol. 2018. PMID: 29569788
-
Can biomass supply meet the demands of bioenergy with carbon capture and storage (BECCS)?Glob Chang Biol. 2020 Oct;26(10):5358-5364. doi: 10.1111/gcb.15296. Epub 2020 Aug 20. Glob Chang Biol. 2020. PMID: 32726492
-
Bioenergy Crops for Low Warming Targets Require Half of the Present Agricultural Fertilizer Use.Environ Sci Technol. 2021 Aug 3;55(15):10654-10661. doi: 10.1021/acs.est.1c02238. Epub 2021 Jul 21. Environ Sci Technol. 2021. PMID: 34288664
-
Forests, carbon and global climate.Philos Trans A Math Phys Eng Sci. 2002 Aug 15;360(1797):1567-91. doi: 10.1098/rsta.2002.1020. Philos Trans A Math Phys Eng Sci. 2002. PMID: 12460485 Review.
-
Negative emissions technologies and carbon capture and storage to achieve the Paris Agreement commitments.Philos Trans A Math Phys Eng Sci. 2018 May 13;376(2119):20160447. doi: 10.1098/rsta.2016.0447. Philos Trans A Math Phys Eng Sci. 2018. PMID: 29610379 Free PMC article. Review.
Cited by
-
Trade-offs in land-based carbon removal measures under 1.5 °C and 2 °C futures.Nat Commun. 2024 Mar 14;15(1):2297. doi: 10.1038/s41467-024-46575-3. Nat Commun. 2024. PMID: 38485972 Free PMC article.
-
A bioenergy-focused versus a reforestation-focused mitigation pathway yields disparate carbon storage and climate responses.Proc Natl Acad Sci U S A. 2024 Feb 13;121(7):e2306775121. doi: 10.1073/pnas.2306775121. Epub 2024 Feb 5. Proc Natl Acad Sci U S A. 2024. PMID: 38315850 Free PMC article.
-
The potential of emerging bio-based products to reduce environmental impacts.Nat Commun. 2023 Dec 21;14(1):8521. doi: 10.1038/s41467-023-43797-9. Nat Commun. 2023. PMID: 38129383 Free PMC article.
-
Investing in mini-livestock production for food security and carbon neutrality in China.Proc Natl Acad Sci U S A. 2023 Oct 24;120(43):e2304826120. doi: 10.1073/pnas.2304826120. Epub 2023 Oct 16. Proc Natl Acad Sci U S A. 2023. PMID: 37844251
-
Accounting for the climate benefit of temporary carbon storage in nature.Nat Commun. 2023 Sep 7;14(1):5485. doi: 10.1038/s41467-023-41242-5. Nat Commun. 2023. PMID: 37679349 Free PMC article.
References
-
- Rogelj J, McCollum DL, O’Neill BC, Riahi K. 2020 emissions levels required to limit warming to below 2 degrees C. Nat. Clim. Change. 2013;3:405–412. doi: 10.1038/nclimate1758. - DOI
-
- Fuss, S. et al. Betting on negative emissions. Nat. Clim. Change. 4, 850–853 (2014).
-
- Popp A, et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change. 2017;42:331–345. doi: 10.1016/j.gloenvcha.2016.10.002. - DOI
Publication types
Grants and funding
- EP/N030141/1/Engineering and Physical Sciences Research Council (EPSRC)/International
- NE/P014941/1/Natural Environment Research Council (NERC)/International
- NE/P014941/1/Natural Environment Research Council (NERC)/International
- NE/P014941/1/Natural Environment Research Council (NERC)/International
- NE/P014941/1/Natural Environment Research Council (NERC)/International
- NE/P014941/1/Natural Environment Research Council (NERC)/International
- NE/P019951/1/Natural Environment Research Council (NERC)/International
- NE/P014941/1/Natural Environment Research Council (NERC)/International
- NE/P015050/1/Natural Environment Research Council (NERC)/International
- NE/P014909/1/Natural Environment Research Council (NERC)/International
- NE/P015050/1/Natural Environment Research Council (NERC)/International
- NE/P015050/1/Natural Environment Research Council (NERC)/International
- NE/P014909/1/Natural Environment Research Council (NERC)/International
- GA603542/EC | Seventh Framework Programme (European Union Seventh Framework Programme)/International
- GA603542/EC | Seventh Framework Programme (European Union Seventh Framework Programme)/International
- GA603542/EC | Seventh Framework Programme (European Union Seventh Framework Programme)/International
- 641816/EC | Horizon 2020 (European Union Framework Programme for Research and Innovation)/International
- 641816/EC | Horizon 2020 (European Union Framework Programme for Research and Innovation)/International
- NSF-AGS-12-43071/National Science Foundation (NSF)/International
- NSF-AGS-12-43071/National Science Foundation (NSF)/International
LinkOut - more resources
Full Text Sources
Other Literature Sources
