Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
, 13 (8), e0201246

Pre-sleep Treatment With Galantamine Stimulates Lucid Dreaming: A Double-Blind, Placebo-Controlled, Crossover Study

Randomized Controlled Trial

Pre-sleep Treatment With Galantamine Stimulates Lucid Dreaming: A Double-Blind, Placebo-Controlled, Crossover Study

Stephen LaBerge et al. PLoS One.


Lucid dreaming is a remarkable state of consciousness in which one is aware of the fact that one is dreaming while continuing to dream. Based on the strong relationship between physiological activation during rapid eye-movement sleep and lucid dreaming, our pilot research investigated whether enhancing cortical activation via acetylcholinesterease inhibition (AChEI) would increase the frequency of lucid dreams and found AChEI to be a promising method for lucid dream induction. In the current study we sought to quantify the size and reliability of the effect of AChEI on lucid dreaming, dream recall and dream content as well as to test the effectiveness of an integrated lucid dream induction protocol which combined cholinergic stimulation with other methods for lucid dream induction. Participants (N = 121) with high dream recall and an interest in lucid dreaming were randomly assigned counterbalanced orders of 3 doses of galantamine (0, 4 and 8 mg). On 3 consecutive nights, they awoke approximately 4.5 hours after lights out, recalled a dream, ingested the capsules and stayed out of bed for at least 30 minutes. Participants then returned to bed and practiced the Mnemonic Induction of Lucid Dreams technique while returning to sleep. The percentage of participants who reported a lucid dream was significantly increased for both 4 mg (27%, odds ratio = 2.29) and 8 mg doses (42%, odds ratio = 4.46) compared to the active placebo procedure (14%). Galantamine also significantly increased dream recall, sensory vividness and complexity (p<0.05). Dream recall, cognitive clarity, control, positive emotion, vividness and self-reflection were increased during lucid compared to non-lucid dreams (p<0.0001). These results show that galantamine increases the frequency of lucid dreams in a dose-related manner. Furthermore, the integrated method of taking galantamine in the last third of the night with at least 30 minutes of sleep interruption and with an appropriately focused mental set is one of the most effective methods for inducing lucid dreams available today.

Conflict of interest statement

The authors have declared that no competing interests exist.


Fig 1
Fig 1. Schematic diagram of experimental procedure.
(Note: figure not to scale, timing approximate). A. LO: Lights Out. Sleep for approximately 3 REM cycles. B. DREC: Recall and memorize dream upon awakening to use with MILD procedure at E. C. Ingest galantamine capsules. (All participants received all three doses (0, 4, and 8 mg) in one of 6 counterbalanced orders.) D. Sleep interruption (out of bed for 30 min). Engage in quiet activity with focus on lucid dreaming. (“Wake back to bed") E. Return to sleep practicing MILD using the dream recalled at B. F. Experimental Nap(s). G. REPORT: On awakening, dream recall, content scales, and full reports for lucid dreams.
Fig 2
Fig 2. Percent of participants (N = 121) reporting at least one lucid dream (LD) on returning to sleep following ingestion of one of three masked doses of galantamine (0 mg [G0], 4 mg [G4], and 8 mg [G8]) prior to 30–40 minutes out of bed.
The baseline estimate (“BASE”, 4%) of lucid dreaming frequency for one night was calculated from the self-reported estimates of how many LDs participants experienced in the previous six months, divided by 180. [95% CI computed by resampling.] Error bars show estimated standard error of the conditional means. Asterisks indicate statistically significant differences between conditions: * p<0.05; ** p<0.01; *** p<0.001.
Fig 3
Fig 3. Responses to dimensions of consciousness (DIMs) questionnaire separated by lucid and non-lucid dreams and galantamine dose (G0 = 0 mg; G4 = 4 mg; G8 = 8 mg).
Points and error bars show the mean and standard error of the mean.

Similar articles

See all similar articles

Cited by 6 PubMed Central articles

See all "Cited by" articles


    1. LaBerge S. Lucid dreaming: Paradoxes of dreaming consciousness In: Cardeña E, Lynn SJ, Krippner S, editors. Varieties of anomalous experience: Examining the scientific evidence (2nd ed). Washington, DC: American Psychological Association; 2014. p. 145–73.
    1. LaBerge S. Lucid dreaming: Metaconsciousness during paradoxical sleep In: Glucksman MKM, editor. Dream research: Contributions to clinical practice. New York, NY: Routledge; 2015. p. 198–214.
    1. LaBerge SP, Nagel LE, Dement WC, Zarcone VP. Lucid dreaming verified by volitional communication during REM sleep. Percept Mot Skills. 1981; 52: 727–32. 10.2466/pms.1981.52.3.727 - DOI - PubMed
    1. LaBerge S, Rheingold H. Exploring the world of lucid dreaming. New York, NY: Ballantine Books; 1990.
    1. LaBerge S. Lucid dreaming: Psychophysiological studies of consciousness during REM sleep In: Bootzin RR, Kihlstrom JF, Schacter DL, editors. Sleep and Cognition. Washington DC: American Psychological Association; 1990. pp. 109–26.

Publication types

MeSH terms