Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2015 Nov 1;6(11):6097-6101.
doi: 10.1039/c5sc02044a. Epub 2015 Jul 20.

Coupling of chromophores with exactly opposite luminescence behaviours in mesostructured organosilicas for high-efficiency multicolour emission

Affiliations

Coupling of chromophores with exactly opposite luminescence behaviours in mesostructured organosilicas for high-efficiency multicolour emission

Dongdong Li et al. Chem Sci. .

Abstract

Aggregation-induced emission (AIE) and aggregation-caused quenching (ACQ) materials are important for various fluorescence-based applications but cannot easily collaborate because of their opposite luminescence behaviours. Here, we demonstrate a strategy to integrate AIE and ACQ chromophores in periodic mesoporous organosilicas (PMOs) for high-efficiency multicolour emission. Tetraphenylethene (TPE)-bridged AIE-PMOs are prepared as hosts to encapsulate ACQ dyes (e.g. RhB), which enables fine-tuning of ACQ@AIE-PMO emissions over the entire visible spectrum in the solid and film states. Significantly, high-quality white light is achieved with CIE coordinates of (0.32, 0.33) and a quantum yield of up to 49.6%. Because of their high stability and solution processability, the ACQ@AIE-PMOs can be applied in solid-state lighting and bioimaging. This design concept opens up new perspectives for developing high-performance luminescent materials by the combination of a wide variety of AIE and ACQ chromophores.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Schematic illustration of the construction of ACQ@AIE-PMO with tuneable multicolour emission. AIE-PMO nanospheres are prepared by using AIE-active TPE-Si as a precursor, where TPE units are covalently embedded within the framework forming the pore walls; ACQ molecules (such as RhB) are then encapsulated in the mesoporous channels of the AIE-PMO; tuneable multicolour emission of PMO is achieved on the basis of FRET from the AIE-PMO donor to the ACQ acceptor. Note that the TPE-Si precursor is nonemissive in solution but luminesces intensively upon molecular aggregation, while RhB dye is emissive in solution but suffers from aggregation-caused fluorescence quenching.
Fig. 2
Fig. 2. (a) Powder XRD patterns of mesostructured AIE-PMOs. (b) SEM image of AIE-PMO3. (c) N2 adsorption–desorption isotherms of AIE-PMOs and their corresponding pore size distributions. (d) TEM image of AIE-PMO3.
Fig. 3
Fig. 3. (a) Fluorescence spectra of AIE-PMOs in the solid state. (b) Fluorescence spectra of RhB@AIE-PMO2 powders with different RhB contents. (c) Corresponding emission colours of RhB@AIE-PMO2 powders (marked by the dots) in the CIE 1931 chromaticity diagram. (d) Fluorescence decay profiles of RhB@AIE-PMO2 with different RhB contents at λex = 365 nm and λem = 480 nm.
Fig. 4
Fig. 4. (Left) Bright-field and (right) fluorescent images of HeLa cells after incubation with RhB@AIE-PMO2 with different RhB concentrations: (a and b) 0 mol%, (c and d) 0.36 mol%, and (e and f) 1.71 mol%.
Fig. 5
Fig. 5. (a) Fluorescence spectra of RhB@AIE-PMO films with different RhB content. (b) Corresponding emission colours of the films (marked by the dots) in the CIE 1931 chromaticity diagram. (c) PMO composite films coated on 10 × 10 cm glass under sunlight (left), blue film on 10 × 10 cm glass (middle) and white-light film on 5 × 5 cm quartz (right) under 365 nm UV irradiation.

Similar articles

Cited by

References

    1. Weissleder R., Tung C. H., Mahmood U., Bogdanov A. Nat. Biotechnol. 1999;17:375. - PubMed
    2. Urano Y., Asanuma D., Hama Y., Koyama Y., Barrett T., Kamiya M., Nagano T., Watanabe T., Hasegawa A., Choyke P. L., Kobayashi H. Nat. Med. 2009;15:104. - PMC - PubMed
    3. Kim H. N., Guo Z. Q., Zhu W. H., Yoon J., Tian H. Chem. Soc. Rev. 2011;40:79. - PubMed
    4. Razgulin A., Ma N., Rao J. H. Chem. Soc. Rev. 2011;40:4186. - PubMed
    5. Chan J., Dodani S. C., Chang C. J. Nat. Chem. 2012;4:973. - PMC - PubMed
    1. Thomas III S. W., Joly G. D., Swager T. M. Chem. Rev. 2007;107:1339. - PubMed
    1. Luo J. D., Xie Z. L., Lam J. W. Y., Cheng L., Chen H. Y., Qiu C. F., Kwok H. S., Zhan X. W., Liu Y. Q., Zhu D. B., Tang B. Z. Chem. Commun. 2001:1740. - PubMed
    2. Hong Y. N., Lam J. W. Y., Tang B. Z. Chem. Soc. Rev. 2011;40:5361. - PubMed
    3. Ding D., Li K., Liu B., Tang B. Z. Acc. Chem. Res. 2013;46:2441. - PubMed
    4. Zhang Y. P., Li D. D., Li Y., Yu J. H. Chem. Sci. 2014;5:2710.
    5. Shi C. X., Guo Z. Q., Yan Y. L., Zhu S. Q., Xie Y. S., Zhao Y. S., Zhu W. H., Tian H. ACS Appl. Mater. Interfaces. 2013;5:192. - PubMed
    6. Shao A. D., Xie Y. S., Zhu S. J., Guo Z. Q., Zhu S. Q., Guo J., Shi P., James T. D., Tian H., Zhu W. H. Angew. Chem., Int. Ed. 2015;54:7275. - PubMed
    1. Huang J., Sun N., Dong Y. Q., Tang R. L., Lu P., Cai P., Li Q. Q., Ma D. G., Qin J. G., Li Z. Adv. Funct. Mater. 2013;23:2329.
    2. Hong Y. N., Lam J. W. Y., Tang B. Z. Chem. Commun. 2009:4332. - PubMed
    1. Yuan W. Z., Lu P., Chen S. M., Lam J. W. Y., Wang Z. M., Liu Y., Kwok H. S., Ma Y. G., Tang B. Z. Adv. Mater. 2010;22:2159. - PubMed
    2. Zhao Q. L., Zhang X. A., Wei Q., Wang J., Shen X. Y., Qin A. J., Sun J. Z., Tang B. Z. Chem. Commun. 2012;48:11671. - PubMed
    3. Ozawa A., Shimizu A., Nishiyabu R., Kubo Y. Chem. Commun. 2015;51:118. - PubMed
    4. Chen G., Li W. B., Zhou T. R., Peng Q., Zhai D., Li H. X., Yuan W. Z., Zhang Y. M. and Tang B. Z., Adv. Mater., 10.1002/adma.201501981. - DOI - PubMed