Coupling of chromophores with exactly opposite luminescence behaviours in mesostructured organosilicas for high-efficiency multicolour emission
- PMID: 30090223
- PMCID: PMC6054107
- DOI: 10.1039/c5sc02044a
Coupling of chromophores with exactly opposite luminescence behaviours in mesostructured organosilicas for high-efficiency multicolour emission
Abstract
Aggregation-induced emission (AIE) and aggregation-caused quenching (ACQ) materials are important for various fluorescence-based applications but cannot easily collaborate because of their opposite luminescence behaviours. Here, we demonstrate a strategy to integrate AIE and ACQ chromophores in periodic mesoporous organosilicas (PMOs) for high-efficiency multicolour emission. Tetraphenylethene (TPE)-bridged AIE-PMOs are prepared as hosts to encapsulate ACQ dyes (e.g. RhB), which enables fine-tuning of ACQ@AIE-PMO emissions over the entire visible spectrum in the solid and film states. Significantly, high-quality white light is achieved with CIE coordinates of (0.32, 0.33) and a quantum yield of up to 49.6%. Because of their high stability and solution processability, the ACQ@AIE-PMOs can be applied in solid-state lighting and bioimaging. This design concept opens up new perspectives for developing high-performance luminescent materials by the combination of a wide variety of AIE and ACQ chromophores.
Figures
Similar articles
-
Light-Emitting Lanthanide Periodic Mesoporous Organosilica (PMO) Hybrid Materials.Materials (Basel). 2020 Jan 24;13(3):566. doi: 10.3390/ma13030566. Materials (Basel). 2020. PMID: 31991687 Free PMC article. Review.
-
Structural Engineering of Red Luminogens to Realize High Emission Efficiency through ACQ-to-AIE Transformation.Chemistry. 2023 May 8;29(26):e202300029. doi: 10.1002/chem.202300029. Epub 2023 Mar 23. Chemistry. 2023. PMID: 36806228
-
AIE-Based & Organic Luminescent Materials: Nanoarchitectonics and Advanced Applications.Chem Asian J. 2024 Aug 13:e202400682. doi: 10.1002/asia.202400682. Online ahead of print. Chem Asian J. 2024. PMID: 39136399 Review.
-
Solid-State Fluorescent Carbon Dots with Aggregation-Induced Yellow Emission for White Light-Emitting Diodes with High Luminous Efficiencies.ACS Appl Mater Interfaces. 2019 Jul 10;11(27):24395-24403. doi: 10.1021/acsami.9b04600. Epub 2019 Jun 27. ACS Appl Mater Interfaces. 2019. PMID: 31246396
-
Inkjet-Printed Photoluminescent Patterns of Aggregation-Induced-Emission Chromophores on Surface-Anchored Metal-Organic Frameworks.ACS Appl Mater Interfaces. 2018 Aug 1;10(30):25754-25762. doi: 10.1021/acsami.8b05568. Epub 2018 Jul 20. ACS Appl Mater Interfaces. 2018. PMID: 30028121
Cited by
-
A Carbazole-based Fluorescent Probe with AIE Performance and a Large Stokes Shift for Peroxynitrite Detection and Imaging in Live Cells.J Fluoresc. 2024 Oct 5. doi: 10.1007/s10895-024-03961-w. Online ahead of print. J Fluoresc. 2024. PMID: 39368045
-
Ultrasmall organosilica nanoparticles with strong solid-state fluorescence for multifunctional applications.J Adv Res. 2023 May;47:93-103. doi: 10.1016/j.jare.2022.07.006. Epub 2022 Aug 2. J Adv Res. 2023. PMID: 35931324 Free PMC article.
-
A Novel Turn-On Fluorescent Sensor Based on Sulfur Quantum Dots and MnO2 Nanosheet Architectures for Detection of Hydrazine.Nanomaterials (Basel). 2022 Jun 27;12(13):2207. doi: 10.3390/nano12132207. Nanomaterials (Basel). 2022. PMID: 35808042 Free PMC article.
-
Light-Emitting Lanthanide Periodic Mesoporous Organosilica (PMO) Hybrid Materials.Materials (Basel). 2020 Jan 24;13(3):566. doi: 10.3390/ma13030566. Materials (Basel). 2020. PMID: 31991687 Free PMC article. Review.
-
Rational design of asymmetric red fluorescent probes for live cell imaging with high AIE effects and large two-photon absorption cross sections using tunable terminal groups.Chem Sci. 2016 Jul 1;7(7):4527-4536. doi: 10.1039/c5sc04920b. Epub 2016 Mar 18. Chem Sci. 2016. PMID: 30155099 Free PMC article.
References
-
- Weissleder R., Tung C. H., Mahmood U., Bogdanov A. Nat. Biotechnol. 1999;17:375. - PubMed
- Urano Y., Asanuma D., Hama Y., Koyama Y., Barrett T., Kamiya M., Nagano T., Watanabe T., Hasegawa A., Choyke P. L., Kobayashi H. Nat. Med. 2009;15:104. - PMC - PubMed
- Kim H. N., Guo Z. Q., Zhu W. H., Yoon J., Tian H. Chem. Soc. Rev. 2011;40:79. - PubMed
- Razgulin A., Ma N., Rao J. H. Chem. Soc. Rev. 2011;40:4186. - PubMed
- Chan J., Dodani S. C., Chang C. J. Nat. Chem. 2012;4:973. - PMC - PubMed
-
- Thomas III S. W., Joly G. D., Swager T. M. Chem. Rev. 2007;107:1339. - PubMed
-
- Luo J. D., Xie Z. L., Lam J. W. Y., Cheng L., Chen H. Y., Qiu C. F., Kwok H. S., Zhan X. W., Liu Y. Q., Zhu D. B., Tang B. Z. Chem. Commun. 2001:1740. - PubMed
- Hong Y. N., Lam J. W. Y., Tang B. Z. Chem. Soc. Rev. 2011;40:5361. - PubMed
- Ding D., Li K., Liu B., Tang B. Z. Acc. Chem. Res. 2013;46:2441. - PubMed
- Zhang Y. P., Li D. D., Li Y., Yu J. H. Chem. Sci. 2014;5:2710.
- Shi C. X., Guo Z. Q., Yan Y. L., Zhu S. Q., Xie Y. S., Zhao Y. S., Zhu W. H., Tian H. ACS Appl. Mater. Interfaces. 2013;5:192. - PubMed
- Shao A. D., Xie Y. S., Zhu S. J., Guo Z. Q., Zhu S. Q., Guo J., Shi P., James T. D., Tian H., Zhu W. H. Angew. Chem., Int. Ed. 2015;54:7275. - PubMed
-
- Huang J., Sun N., Dong Y. Q., Tang R. L., Lu P., Cai P., Li Q. Q., Ma D. G., Qin J. G., Li Z. Adv. Funct. Mater. 2013;23:2329.
- Hong Y. N., Lam J. W. Y., Tang B. Z. Chem. Commun. 2009:4332. - PubMed
-
- Yuan W. Z., Lu P., Chen S. M., Lam J. W. Y., Wang Z. M., Liu Y., Kwok H. S., Ma Y. G., Tang B. Z. Adv. Mater. 2010;22:2159. - PubMed
- Zhao Q. L., Zhang X. A., Wei Q., Wang J., Shen X. Y., Qin A. J., Sun J. Z., Tang B. Z. Chem. Commun. 2012;48:11671. - PubMed
- Ozawa A., Shimizu A., Nishiyabu R., Kubo Y. Chem. Commun. 2015;51:118. - PubMed
- Chen G., Li W. B., Zhou T. R., Peng Q., Zhai D., Li H. X., Yuan W. Z., Zhang Y. M. and Tang B. Z., Adv. Mater., 10.1002/adma.201501981. - DOI - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources
