Direct Reprogramming of Glioblastoma Cells into Neurons Using Small Molecules

ACS Chem Neurosci. 2018 Dec 19;9(12):3175-3185. doi: 10.1021/acschemneuro.8b00365. Epub 2018 Aug 22.

Abstract

Glioblastoma multiforme, a type of deadly brain cancer, originates most commonly from astrocytes found in the brain. Current multimodal treatments for glioblastoma minimally increase life expectancy, but significant advancements in prognosis have not been made in the past few decades. Here we investigate cellular reprogramming for inhibiting the aggressive proliferation of glioblastoma cells. Cellular reprogramming converts one differentiated cell type into another type based on the principles of regenerative medicine. In this study, we used cellular reprogramming to investigate whether small molecule mediated reprogramming could convert glioblastoma cells into neurons. We investigated a novel method for reprogramming U87MG human glioblastoma cells into terminally differentiated neurons using a small molecule cocktail consisting of forskolin, ISX9, CHIR99021 I-BET 151, and DAPT. Treating U87MG glioblastoma cells with this cocktail successfully reprogrammed the malignant cells into early neurons over 13 days. The reprogrammed cells displayed morphological and immunofluorescent characteristics associated with neuronal phenotypes. Genetic analysis revealed that the chemical cocktail upregulates the Ngn2, Ascl1, Brn2, and MAP2 genes, resulting in neuronal reprogramming. Furthermore, these cells displayed decreased viability and lacked the ability to form high numbers of tumor-like spheroids. Overall, this study validates the use of a novel small molecule cocktail for reprogramming glioblastoma into nonproliferating neurons.

Keywords: Tissue engineering; cellular reprogramming; differentiation; neuroscience; regenerative medicine.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Basic Helix-Loop-Helix Transcription Factors / drug effects
  • Basic Helix-Loop-Helix Transcription Factors / genetics
  • Brain Neoplasms / metabolism
  • Brain Neoplasms / pathology
  • Cell Line, Tumor
  • Cellular Reprogramming / drug effects*
  • Cellular Reprogramming Techniques
  • Colforsin / pharmacology*
  • Diamines / pharmacology*
  • Glioblastoma / metabolism*
  • Glioblastoma / pathology
  • Heterocyclic Compounds, 4 or More Rings / pharmacology*
  • Homeodomain Proteins / drug effects
  • Homeodomain Proteins / genetics
  • Humans
  • Isoxazoles / pharmacology*
  • Microtubule-Associated Proteins / drug effects
  • Microtubule-Associated Proteins / genetics
  • Nerve Tissue Proteins / drug effects
  • Nerve Tissue Proteins / genetics
  • Neurons / cytology*
  • Neurons / metabolism
  • POU Domain Factors / drug effects
  • POU Domain Factors / genetics
  • Pyridines / pharmacology*
  • Pyrimidines / pharmacology*
  • Thiazoles / pharmacology*
  • Thiophenes / pharmacology*
  • Up-Regulation

Substances

  • 24-diamino-5-phenylthiazole
  • ASCL1 protein, human
  • Basic Helix-Loop-Helix Transcription Factors
  • Chir 99021
  • Diamines
  • GSK1210151A
  • Heterocyclic Compounds, 4 or More Rings
  • Homeodomain Proteins
  • Isoxazoles
  • MAP2 protein, human
  • Microtubule-Associated Proteins
  • N-cyclopropyl-5-(thiophen-2-yl)isoxazole-3-carboxamide
  • NEUROG2 protein, human
  • Nerve Tissue Proteins
  • POU Domain Factors
  • Pyridines
  • Pyrimidines
  • Thiazoles
  • Thiophenes
  • transcription factor Brn-2
  • Colforsin