gpGrouper: A Peptide Grouping Algorithm for Gene-Centric Inference and Quantitation of Bottom-Up Proteomics Data
- PMID: 30093420
- PMCID: PMC6210220
- DOI: 10.1074/mcp.TIR118.000850
gpGrouper: A Peptide Grouping Algorithm for Gene-Centric Inference and Quantitation of Bottom-Up Proteomics Data
Abstract
In quantitative mass spectrometry, the method by which peptides are grouped into proteins can have dramatic effects on downstream analyses. Here we describe gpGrouper, an inference and quantitation algorithm that offers an alternative method for assignment of protein groups by gene locus and improves pseudo-absolute iBAQ quantitation by weighted distribution of shared peptide areas. We experimentally show that distributing shared peptide quantities based on unique peptide peak ratios improves quantitation accuracy compared with conventional winner-take-all scenarios. Furthermore, gpGrouper seamlessly handles two-species samples such as patient-derived xenografts (PDXs) without ignoring the host species or species-shared peptides. This is a critical capability for proper evaluation of proteomics data from PDX samples, where stromal infiltration varies across individual tumors. Finally, gpGrouper calculates peptide peak area (MS1) based expression estimates from multiplexed isobaric data, producing iBAQ results that are directly comparable across label-free, isotopic, and isobaric proteomics approaches.
Keywords: Bioinformatics software; Cancer Biology; Label-free quantification; Mass Spectrometry; Mouse models; Quantification; iTRAQ; patient derived xenograft; protein inference; shared peptides.
© 2018 Saltzman et al.
Figures
Similar articles
-
A simple peak detection and label-free quantitation algorithm for chromatography-mass spectrometry.BMC Bioinformatics. 2014 Nov 25;15(1):376. doi: 10.1186/s12859-014-0376-0. BMC Bioinformatics. 2014. PMID: 25420746 Free PMC article.
-
Integrated Bottom-Up and Top-Down Proteomics of Patient-Derived Breast Tumor Xenografts.Mol Cell Proteomics. 2016 Jan;15(1):45-56. doi: 10.1074/mcp.M114.047480. Epub 2015 Oct 26. Mol Cell Proteomics. 2016. PMID: 26503891 Free PMC article.
-
SPA: A Quantitation Strategy for MS Data in Patient-derived Xenograft Models.Genomics Proteomics Bioinformatics. 2021 Aug;19(4):522-533. doi: 10.1016/j.gpb.2019.11.016. Epub 2021 Feb 23. Genomics Proteomics Bioinformatics. 2021. PMID: 33631430 Free PMC article.
-
Methods and Algorithms for Quantitative Proteomics by Mass Spectrometry.Methods Mol Biol. 2020;2051:161-197. doi: 10.1007/978-1-4939-9744-2_7. Methods Mol Biol. 2020. PMID: 31552629 Review.
-
Recent advances in isobaric labeling and applications in quantitative proteomics.Proteomics. 2022 Oct;22(19-20):e2100256. doi: 10.1002/pmic.202100256. Epub 2022 Jun 22. Proteomics. 2022. PMID: 35687565 Free PMC article. Review.
Cited by
-
Dawn-to-dusk dry fasting induces anti-atherosclerotic, anti-inflammatory, and anti-tumorigenic proteome in peripheral blood mononuclear cells in subjects with metabolic syndrome.Metabol Open. 2022 Nov 1;16:100214. doi: 10.1016/j.metop.2022.100214. eCollection 2022 Dec. Metabol Open. 2022. PMID: 36506940 Free PMC article.
-
Proteogenomic Approaches for the Identification of NF1/Neurofibromin-depleted Estrogen Receptor-positive Breast Cancers for Targeted Treatment.Cancer Res Commun. 2023 Jul 26;3(7):1366-1377. doi: 10.1158/2767-9764.CRC-23-0044. eCollection 2023 Jul. Cancer Res Commun. 2023. PMID: 37501682 Free PMC article.
-
Kinase inhibitor pulldown assay (KiP) for clinical proteomics.Clin Proteomics. 2024 Jan 16;21(1):3. doi: 10.1186/s12014-023-09448-3. Clin Proteomics. 2024. PMID: 38225548 Free PMC article.
-
Gasdermin D-mediated pyroptosis is regulated by AMPK-mediated phosphorylation in tumor cells.Cell Death Dis. 2023 Jul 26;14(7):469. doi: 10.1038/s41419-023-06013-6. Cell Death Dis. 2023. PMID: 37495617 Free PMC article.
-
The Structure-Function Relationship of Angular Estrogens and Estrogen Receptor Alpha to Initiate Estrogen-Induced Apoptosis in Breast Cancer Cells.Mol Pharmacol. 2020 Jul;98(1):24-37. doi: 10.1124/mol.120.119776. Epub 2020 May 3. Mol Pharmacol. 2020. PMID: 32362585 Free PMC article.
References
-
- Aebersold R., and Mann M. (2003) Mass spectrometry-based proteomics. Nature 422, 198–207 - PubMed
-
- Nesvizhskii A. I., and Aebersold R. (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol. Cell. Proteomics 4, 1419–1440 - PubMed
-
- Huang T., Wang J., Yu W., and He Z. (2012) Protein inference: a review. Brief Bioinforma. 13, 586–614 - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
