Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2018 Jul 17;9(55):30587-30593.
doi: 10.18632/oncotarget.25743.

Detection of identical T cell clones in peritumoral pleural effusion and pneumonitis lesions in a cancer patient during immune-checkpoint blockade

Affiliations

Detection of identical T cell clones in peritumoral pleural effusion and pneumonitis lesions in a cancer patient during immune-checkpoint blockade

Kentaro Tanaka et al. Oncotarget. .

Abstract

Although immune-related adverse events (irAEs) of treatment with immune-checkpoint inhibitors may be due to cellular immunity mediated by T lymphocytes, their pathogenesis has remained unknown. Here we collected bronchoalveolar lavage fluid (BALF) from a cancer patient with nivolumab-induced pneumonitis and isolated mononuclear cells for next-generation sequencing of the complementarity-determining region of the T cell receptor (TCR) β chain. Mononuclear cells in peritumoral pleural effusion isolated from the patient were similarly analyzed, and the results obtained for the two specimens were compared. A substantial number of TCRβ clones in BALF were also identified among lymphocytes in the peritumoral pleural effusion. Such a correlation was not apparent between TCRβ clones in BALF and those in peripheral blood. Moreover, many tumor-associated clones with a read frequency of ≥0.10% were also present in BALF. Our data suggest that irAEs might be induced by drug-activated lymphocytes originating from tumor tissue. Deep sequencing will thus be indispensable for investigations of the immune-based pathogenesis of, and the development of optimal treatments for, irAEs.

Keywords: bronchoalveolar lavage fluid; complementarity-determining region; immune-checkpoint inhibitor; immune-related adverse event; next-generation sequencing.

PubMed Disclaimer

Conflict of interest statement

CONFLICTS OF INTEREST The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1. Chest CT scans of the patient
(A) Clinical course of the pleural effusion and metastatic tumors. (B) Clinical course of the pneumonitis.
Figure 2
Figure 2. Flow cytometric analysis of lymphocyte subsets in BALF, pleural fluid, and peripheral blood of the patient
(A, B) Expression of CD19 and CD3 on CD45+ cells (A) and expression of CD4 and CD8 on CD45+ CD3+ cells (B) in BALF. (C–E) Expression of PD-1 and TIM-3 on CD8+ T cells and CD4+ T cells in pleural fluid (C), BALF (D), and peripheral blood (E). (F) Expression of PD-1 and TIM-3 on CD8+ T cells and CD4+ T cells in BALF of patients with secondary organizing pneumonia (OP) or drug-induced pneumonitis.
Figure 3
Figure 3. Relations among the numbers of TCRβ clones in pleural fluid, BALF, and peripheral blood of the patient
(A–C) Numbers of clones in BALF and pleural effusion (A), in pleural effusion and peripheral blood (B), and in BALF and peripheral blood (C). Pearson’s correlation coefficient (r) values are shown. (D) T cell clones in BALF (read frequency of ≥0.1%) compared with those detected in pleural fluid. (E) T cell clones in peripheral blood (read frequency of ≥0.1%) compared with those detected in pleural fluid. (F) T cell clones in BALF (read frequency of ≥0.1%) compared with those detected in peripheral blood. X and Y axis indicate each clone of TCRβ and read frequency, respectively.

Similar articles

Cited by

References

    1. Postow MA, Callahan MK, Wolchok JD. Immune Checkpoint Blockade in Cancer Therapy. J Clin Oncol. 2015;33:1974–82. doi: 10.1200/JCO.2014.59.4358. - DOI - PMC - PubMed
    1. Postow MA, Sidlow R, Hellmann MD. Immune-Related Adverse Events Associated with Immune Checkpoint Blockade. N Engl J Med. 2018;378:158–68. doi: 10.1056/NEJMra1703481. - DOI - PubMed
    1. Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y, Hicks M, Puzanov I, Alexander MR, Bloomer TL, Becker JR, Slosky DA, Phillips EJ, et al. Fulminant Myocarditis with Combination Immune Checkpoint Blockade. N Engl J Med. 2016;375:1749–55. doi: 10.1056/NEJMoa1609214. - DOI - PMC - PubMed
    1. Laubli H, Koelzer VH, Matter MS, Herzig P, Dolder Schlienger B, Wiese MN, Lardinois D, Mertz KD, Zippelius A. The T cell repertoire in tumors overlaps with pulmonary inflammatory lesions in patients treated with checkpoint inhibitors. Oncoimmunology. 2018;7:e1386362. doi: 10.1080/2162402X.2017.1386362. - DOI - PMC - PubMed
    1. Yanagihara T, Tanaka K, Ota K, Kashiwagi E, Takeuchi A, Tatsugami K, Eto M, Nakanishi Y, Okamoto I. Tumor-infiltrating lymphocyte-mediated pleuritis followed by marked shrinkage of metastatic kidney cancer of the chest wall during nivolumab treatment. Ann Oncol. 2017;28:2038–9. doi: 10.1093/annonc/mdx214. - DOI - PubMed

LinkOut - more resources