Loss of hierarchical imprinting regulation at the Prader-Willi/Angelman syndrome locus in human iPSCs

Hum Mol Genet. 2018 Dec 1;27(23):3999-4011. doi: 10.1093/hmg/ddy274.


The human chr15q11-q13 imprinted cluster is linked to several disorders, including Prader-Willi (PWS) and Angelman (AS) syndromes. Recently, disease modeling approaches based on induced pluripotent stem cells (iPSCs) have been used to study these syndromes. A concern regarding the use of these cells for imprinted disease modeling is the numerous imprinting defects found in many iPSCs. Here, by reprogramming skin fibroblasts from a control and AS individuals, we generated several iPSC lines and addressed the stability of imprinting status across the PWS/AS domain. We focused on three important regulatory DNA elements which are all differentially methylated regions (DMRs), methylated on the maternal allele: the PWS imprinting center (PWS-IC), which is a germline DMR and the somatic NDN and MKRN3 DMRs, hierarchically controlled by PWS-IC. Normal PWS-IC methylation pattern was maintained in most iPSC lines; however, loss of maternal methylation in one out of five control iPSC lines resulted in a monoallelic to biallelic switch for many imprinted genes in this domain. Surprisingly, MKRN3 DMR was found aberrantly hypermethylated in all control and AS iPSCs, regardless of the methylation status of the PWS-IC master regulator. This suggests a loss of hierarchical control of imprinting at PWS/AS region. We confirmed these results in established iPSC lines derived using different reprogramming procedures. Overall, we show that hierarchy of imprinting control in donor cells might not apply to iPSCs, accounting for their spectrum of imprinting alterations. Such differences in imprinting regulation should be taken into consideration for the use of iPSCs in disease modeling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alleles
  • Angelman Syndrome / genetics*
  • Angelman Syndrome / pathology
  • Cellular Reprogramming / genetics
  • Chromosomes, Human, Pair 15 / genetics
  • DNA Methylation / genetics
  • Fibroblasts / metabolism
  • Genomic Imprinting / genetics
  • Germ Cells / metabolism
  • Humans
  • Induced Pluripotent Stem Cells / metabolism
  • Prader-Willi Syndrome / genetics*
  • Prader-Willi Syndrome / pathology
  • Promoter Regions, Genetic
  • Regulatory Elements, Transcriptional / genetics*
  • Ribonucleoproteins / genetics*
  • Skin / metabolism
  • Skin / pathology
  • Tumor Suppressor Proteins / genetics*
  • Ubiquitin-Protein Ligases


  • NDN protein, human
  • Ribonucleoproteins
  • Tumor Suppressor Proteins
  • MKRN3 protein, human
  • Ubiquitin-Protein Ligases