Pre-existing anti-adenovirus (Ad) neutralizing antibodies (AdNAbs) are a major barrier in clinical gene therapy using Ad vectors and oncolytic Ads; however, it has not been fully elucidated which Ad capsid protein-specific antibodies are involved in AdNAb-mediated inhibition of Ad infection in vivo. In this study, mice possessing antibodies specific for each Ad capsid protein were prepared by intramuscular electroporation of each Ad capsid protein-expressing plasmid. Ad vector-mediated hepatic transduction was efficiently inhibited by more than 100-fold in mice immunized with a fiber protein-expressing plasmid or a penton base-expressing plasmid. An Ad vector pre-coated with FX before administration mediated more than 100-fold lower transduction efficiencies in the liver of warfarinized mice immunized with a fiber protein-expressing plasmid or a penton base-expressing plasmid, compared with those in the liver of warfarinized non-immunized mice. These data suggest that anti-fiber protein and anti-penton base antibodies bind to an Ad vector even though FX has already bound to the hexon, and inhibit Ad vector-mediated transduction. This study provides important clues for the development of a novel Ad vector that can circumvent inhibition with AdNAbs.