Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Observational Study
, 18 (1), 88

Impact of Gram Negative Bacteria Airway Recolonization on the Occurrence of Chronic Lung Allograft Dysfunction After Lung Transplantation in a Population of Cystic Fibrosis Patients

Affiliations
Observational Study

Impact of Gram Negative Bacteria Airway Recolonization on the Occurrence of Chronic Lung Allograft Dysfunction After Lung Transplantation in a Population of Cystic Fibrosis Patients

Sarah Orfanos et al. BMC Microbiol.

Abstract

Background: Chronic Lung Allograft Dysfunction (CLAD) is the main cause of morbidity and mortality after the first year following lung transplantation (LTx). Risk factors of CLAD have been extensively studied, but the association between gram-negative bacteria (GNB) bronchial colonization and the development of CLAD is controversial. The purpose of our study was to investigate the association between post-transplant recolonization with the same species or de-novo colonization with a new GNB species and CLAD. The same analysis was performed on a sub-group of patients at the strain level using Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry technique.

Results: Forty adult cystic fibrosis (CF) patients who underwent a first bilateral LTx in the University Hospital of Marseille, between January 2010 and December 2014, were included in the study. Patients with GNB de-novo colonization had a higher risk of developing CLAD (OR = 6.72, p = 0.04) and a lower rate of CLAD-free survival (p = 0.005) compared to patients with GNB recolonization. No conclusion could be drawn from the subgroup MALDI-TOF MS analysis at the strain level.

Conclusion: Post-LTx GNB airway recolonization seems to be a protective factor against CLAD, whereas de-novo colonization with a new species of GNB seems to be a risk factor for CLAD.

Keywords: Chronic lung allograft dysfunction; Cystic fibrosis; Infection and inflammation; Lung transplantation.

Conflict of interest statement

Ethics approval and consent to participate

Written informed consent was obtained from all patients. The study was approved by the local ethic committee (Assistance Publique Hôpitaux de Marseille): Comité d’éthique de la recherche de l’Assistance Publique Hôpitaux de Marseille. No minors were included in the study.

Consent for publication

NA

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Number of chronic lung allograft dysfunction in the three groups: GNB recolonization, GNB de novo colonization and exempt of GNB. Definition of abbreviations: CLAD: Chronic Lung Allograft Dysfunction, GNB: Gram Negative Bacteria. The symbol * indicates statistical significance. The group colonized with a new species of GNB post lung transplant exhibited a higher incidence of chronic lung allograft dysfunction compared to the patients recolonized with the same species of GNB or the patients free from GNB colonization (p = 0.02)
Fig. 2
Fig. 2
Overall and CLAD-free survival in the 3 groups: GNB recolonization, GNB de novo colonization and exempt of GNB: a At the species level (conventional phenotypic identification). b At the strain level (MALDI-TOF MS). Definition of abbreviations: CLAD: Chronic Lung Allograft Dysfunction, GNB: Gram Negative Bacteria. At the species level the group: GNB de-novo colonization presented with a worse CLAD free survival than the groups GNB recolonization or exempt of GNB colonization (p = 0.005). At the strain level there was a tendency to better CLAD free survival in the subgroup GNB recolonization compared to the subgroup de-novo GNB colonization without reaching statistical significance

Similar articles

See all similar articles

References

    1. Yusen RD, Edwards LB, Kucheryavaya AY, Benden C, Dipchand A, Goldfarb S, Levvey BJ, Lund LH, Meiser B, Rossano JW, Stehlik J. The registry of the International Society for Heart and Lung Transplantation: thirty-second official adult lung and heart-lung transplantation report—2015; focus theme: early graft failure. J Heart Lung Transplant. 2016;34(10):1264–1277. doi: 10.1016/j.healun.2015.08.014. - DOI - PubMed
    1. Glanville AR. Bronchoscopic monitoring after lung transplantation. Semin Respir Crit Care Med. 2010;31(2):208–221. doi: 10.1055/s-0030-1249117. - DOI - PubMed
    1. Verleden GM, Raghu G, Meyer KC, Glanville AR, Corris P. A new classification system for chronic lung allograft dysfunction. J Heart Lung Transplant. 2014;33(2):127–133. doi: 10.1016/j.healun.2013.10.022. - DOI - PubMed
    1. Verleden SE, Vasilescu DM, McDonough JE, Ruttens D, Vos R, Vandermeulen E, Bellon H, Geenens R, Verbeken EK, Verschakelen J, Van Raemdonck DE, Wuyts WA, Sokolow Y, Knoop C, Cooper JD, Hogg JC, Verleden GM, Vanaudenaerde BM. Linking clinical phenotypes of chronic lung allograft dysfunction to changes in lung structure. Eur Respir J. 2015;46(5):1430–1439. doi: 10.1183/09031936.00010615. - DOI - PubMed
    1. Meyer KC, Raghu G, Verleden GM, Corris PA, Aurora P, Wilson K, Brozek J, Glanville AR. An international ISHLT/ATS/ERS clinical practice guideline: diagnosis and management of bronchiolitis obliterans syndrome. Eur Respir J. 2014;44(6):1479–1503. doi: 10.1183/09031936.00107514. - DOI - PubMed

Publication types

MeSH terms

Substances

Feedback