Interpretation of in Vitro Metabolic Stability Studies for Racemic Mixtures

ACS Med Chem Lett. 2018 Jul 19;9(8):843-847. doi: 10.1021/acsmedchemlett.8b00259. eCollection 2018 Aug 9.

Abstract

In early drug discovery, where chiral syntheses may not yet have been elucidated or enantiomeric separation is not feasible, screening of racemates in metabolic stability assays may offer a pragmatic approach. To assess the risk of incorrectly deprioritizing enantiomers due to misclassification of apparent in vitro intrinsic clearance (CLintapp), we evaluated (1) theoretical simulations; (2) literature on enantiomeric CLintapp differences; (3) historic MSD data; and (4) new data on enantiomers with high eudysmic ratios and low predicted three-dimensional similarity. Overall, the results suggested minimal risk of not progressing an enantiomer due to an appreciably different (>3-fold) racemate CLintapp.