Absolute and relative pKa predictions via a DFT approach applied to the SAMPL6 blind challenge
- PMID: 30128926
- PMCID: PMC6720109
- DOI: 10.1007/s10822-018-0150-x
Absolute and relative pKa predictions via a DFT approach applied to the SAMPL6 blind challenge
Abstract
In this work, quantum mechanical methods were used to predict the microscopic and macroscopic pKa values for a set of 24 molecules as a part of the SAMPL6 blind challenge. The SMD solvation model was employed with M06-2X and different basis sets to evaluate three pKa calculation schemes (direct, vertical, and adiabatic). The adiabatic scheme is the most accurate approach (RMSE = 1.40 pKa units) and has high correlation (R2 = 0.93), with respect to experiment. This approach can be improved by applying a linear correction to yield an RMSE of 0.73 pKa units. Additionally, we consider including explicit solvent representation and multiple lower-energy conformations to improve the predictions for outliers. Adding three water molecules explicitly can reduce the error by 2-4 pKa units, with respect to experiment, whereas including multiple local minima conformations does not necessarily improve the pKa prediction.
Keywords: Implicit solvent; Quantum chemistry; SAMPL6; pK a.
Figures
Similar articles
-
An explicit-solvent hybrid QM and MM approach for predicting pKa of small molecules in SAMPL6 challenge.J Comput Aided Mol Des. 2018 Oct;32(10):1191-1201. doi: 10.1007/s10822-018-0167-1. Epub 2018 Oct 1. J Comput Aided Mol Des. 2018. PMID: 30276503 Free PMC article.
-
SAMPL6: calculation of macroscopic pKa values from ab initio quantum mechanical free energies.J Comput Aided Mol Des. 2018 Oct;32(10):1203-1216. doi: 10.1007/s10822-018-0138-6. Epub 2018 Aug 6. J Comput Aided Mol Des. 2018. PMID: 30084080 Free PMC article.
-
LogP prediction performance with the SMD solvation model and the M06 density functional family for SAMPL6 blind prediction challenge molecules.J Comput Aided Mol Des. 2020 May;34(5):511-522. doi: 10.1007/s10822-020-00278-1. Epub 2020 Jan 14. J Comput Aided Mol Des. 2020. PMID: 31939103
-
High accuracy quantum-chemistry-based calculation and blind prediction of macroscopic pKa values in the context of the SAMPL6 challenge.J Comput Aided Mol Des. 2018 Oct;32(10):1139-1149. doi: 10.1007/s10822-018-0145-7. Epub 2018 Aug 23. J Comput Aided Mol Des. 2018. PMID: 30141103
-
Overview of the SAMPL6 pKa challenge: evaluating small molecule microscopic and macroscopic pKa predictions.J Comput Aided Mol Des. 2021 Feb;35(2):131-166. doi: 10.1007/s10822-020-00362-6. Epub 2021 Jan 4. J Comput Aided Mol Des. 2021. PMID: 33394238 Free PMC article.
Cited by
-
Theoretical Study on the Alkylimino-Substituted Sulfonamides with Potential Biological Activity.J Phys Chem B. 2023 Aug 3;127(30):6620-6627. doi: 10.1021/acs.jpcb.3c01965. Epub 2023 Jul 21. J Phys Chem B. 2023. PMID: 37478052 Free PMC article.
-
A Guide to In Silico Drug Design.Pharmaceutics. 2022 Dec 23;15(1):49. doi: 10.3390/pharmaceutics15010049. Pharmaceutics. 2022. PMID: 36678678 Free PMC article. Review.
-
Design and Synthesis of New α-hydroxy β-fluoro/β-trifluoromethyl and Unsaturated Phosphonates from Carbohydrate-Derived Building Blocks via Pudovik and Horner-Wadsworth-Emmons Reactions.Molecules. 2022 Aug 24;27(17):5404. doi: 10.3390/molecules27175404. Molecules. 2022. PMID: 36080169 Free PMC article.
-
Improving Small Molecule pK a Prediction Using Transfer Learning With Graph Neural Networks.Front Chem. 2022 May 26;10:866585. doi: 10.3389/fchem.2022.866585. eCollection 2022. Front Chem. 2022. PMID: 35721000 Free PMC article.
-
Evaluation of log P, pKa, and log D predictions from the SAMPL7 blind challenge.J Comput Aided Mol Des. 2021 Jul;35(7):771-802. doi: 10.1007/s10822-021-00397-3. Epub 2021 Jun 24. J Comput Aided Mol Des. 2021. PMID: 34169394 Free PMC article.
References
-
- Zevatskii YE, Samoilov DV. (2011) Modern methods for estimation of ionization constants of organic compounds in solution. Russ J Org Chem 47:1445–1467. doi: 10.1134/S1070428011100010 - DOI
-
- Seybold PG, Shields GC (2015) Computational estimation of pK a values. Wiley Interdiscip Rev Comput Mol Sci 5:290–297. doi: 10.1002/wcms.1218 - DOI
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
