An asymmetric centromeric nucleosome

Elife. 2018 Aug 23:7:e37911. doi: 10.7554/eLife.37911.

Abstract

Nucleosomes contain two copies of each core histone, held together by a naturally symmetric, homodimeric histone H3-H3 interface. This symmetry has complicated efforts to determine the regulatory potential of this architecture. Through molecular design and in vivo selection, we recently generated obligately heterodimeric H3s, providing a powerful tool for discovery of the degree to which nucleosome symmetry regulates chromosomal functions in living cells (Ichikawa et al., 2017). We now have extended this tool to the centromeric H3 isoform (Cse4/CENP-A) in budding yeast. These studies indicate that a single Cse4 N- or C-terminal extension per pair of Cse4 molecules is sufficient for kinetochore function, and validate previous experiments indicating that an octameric centromeric nucleosome is required for viability in this organism. These data also support the generality of the H3 asymmetric interface for probing general questions in chromatin biology.

Keywords: S. cerevisiae; chromosomes; gene expression; histone; kinetochore; nucleosome.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Base Sequence
  • Centromere / metabolism*
  • Microbial Viability
  • Mutation / genetics
  • Nucleosomes / metabolism*
  • Plasmids / metabolism
  • Protein Domains
  • Protein Multimerization
  • Saccharomyces cerevisiae / cytology
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / chemistry
  • Saccharomyces cerevisiae Proteins / metabolism
  • Static Electricity
  • Temperature

Substances

  • Nucleosomes
  • Saccharomyces cerevisiae Proteins