The Clinical and Dosimetric Impact of Real-Time Target Tracking in Pancreatic SBRT

Int J Radiat Oncol Biol Phys. 2019 Jan 1;103(1):268-275. doi: 10.1016/j.ijrobp.2018.08.021. Epub 2018 Aug 24.

Abstract

Purpose: Motion often hinders the safe delivery of ablative doses of radiation in the treatment of pancreatic tumors. Real-time tumor-tracking methods are an emerging technique to increase the accuracy of delivery. In this study, we report on a large, retrospective cohort of pancreatic patients treated with real-time, fiducial-based, kV-image guidance of stereotactic body radiation therapy (SBRT). The purpose of our study was to determine the impact of real-time tracking on treatment accuracy, tumor dose, and clinical workflow.

Methods and materials: Real-time tracking data from 68 patients treated with pancreatic SBRT were analyzed. The kV images orthogonal to the treatment beam were acquired in real time during treatment to visualize the location of implanted fiducial markers. Positional corrections were made if the fiducial markers were observed >3 mm from the expected reference position. We recorded the frequency and nature of treatment interventions resulting from real-time tracking and derived a neural network-based dosimetric model to calculate the impact of these in-treatment interventions on target dose.

Results: Treatment pauses that required patient realignment because of real-time tumor tracking occurred during 32% of all fractions. The median magnitude of realignment shifts was 5.2 mm (range, 2.1-18.9 mm). Forty-five percent of shifts resulted in dosimetric differences to the tumor; of these, the median point dose difference was 23% ± 22% of prescription dose (maximum, 94%). The number of pauses per fraction was significantly higher in patients treated with respiratory gating (vs abdominal compression) and in patients with greater treatment time.

Conclusion: Fiducial-based, real-time target tracking is clinically feasible for pancreatic SBRT treatment. Our data indicate that real-time tumor tracking leads to patient realignment in 32% of cases and results in significant benefits to target coverage. The increased accuracy of real-time target tracking may potentially enable safe dose escalation in pancreatic SBRT.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cone-Beam Computed Tomography
  • Fiducial Markers
  • Four-Dimensional Computed Tomography
  • Humans
  • Pancreatic Neoplasms / diagnostic imaging
  • Pancreatic Neoplasms / pathology
  • Pancreatic Neoplasms / radiotherapy*
  • Radiosurgery / methods*
  • Radiotherapy Dosage*
  • Radiotherapy Planning, Computer-Assisted
  • Retrospective Studies
  • Tumor Burden