Adsorptive interaction of cationic pharmaceuticals on activated charcoal: Experimental determination and QSAR modelling

J Hazard Mater. 2018 Oct 15:360:529-535. doi: 10.1016/j.jhazmat.2018.08.039. Epub 2018 Aug 16.

Abstract

Due to high mobility and specific toxic actions of the ionizable pharmaceuticals in surface water with a normal range of pH, the pharmaceuticals should be removed before being discharged. Therefore, this study investigated the adsorptive interactions between cationic pharmaceuticals and a popular adsorbent (i.e., activated charcoal) frequently used in water treatment processes. For that, we performed isotherm experiments and then the results were plotted by Langmuir model to determine the adsorption affinity (b) and capacity (qm). Afterwards, to interpret the adsorption behaviors, two simple prediction models were developed based on quantitative structure-activity relationships (QSAR). In the modelling, molecular weight (MW), polar surface area (PSA), and octanol-water partitioning coefficient (log P) were used as model parameters. In the results, the combinations of these three parameters could predict the adsorption affinity and capacity in R2 of 0.85 and 0.80, respectively. The robustness of models was validated by leave-one-out cross-validation (Q2LOO) and the estimated Q2LOO values were 0.60 and 0.55 for the adsorption affinity and capacity, respectively, which are higher than the acceptability of standard i.e., 0.5.

Keywords: Activated charcoal; Adsorption; Cationic pharmaceuticals; Micropollutants; QSAR.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • 1-Octanol / chemistry
  • Adsorption
  • Cations
  • Charcoal / chemistry*
  • Models, Theoretical
  • Pharmaceutical Preparations / chemistry*
  • Quantitative Structure-Activity Relationship
  • Water / chemistry
  • Water Pollutants, Chemical / chemistry*
  • Water Purification / methods

Substances

  • Cations
  • Pharmaceutical Preparations
  • Water Pollutants, Chemical
  • Water
  • Charcoal
  • 1-Octanol