DNA breaks induced by iodine-containing contrast medium in radiodiagnostics: a problem of tungsten?

Eur Radiol Exp. 2018 Aug 15;2:21. doi: 10.1186/s41747-018-0050-9. eCollection 2018 Dec.

Abstract

Iodine-containing contrast media (ICM) are extensively used to improve image quality and information content in x-ray-based examinations, particularly in computed tomography (CT). In parallel, there is increasing evidence that the use of ICM during CT sessions is associated with deoxyribonucleic acid (DNA) breaks that may influence the estimation of the risks linked to x-ray exposure. Why has iodine been preferred to any other heavy elements to enhance contrast in radiodiagnostics? How to understand such DNA breaks effect? We searched for the answers in the early times of x-ray medical use. It appeared that the maximal ratio between the relative iodine and water mass energy absorption coefficients is reached in the range of 40-60 keV, which defines the energy range in which the dose is preferentially absorbed by ICM. This range does not correspond to the K-edge of iodine but to that of tungsten, the major component of the x-ray tube anode of CT scanners. At such energy, radiolysis of the ICM produces sodium or potassium iodide that prevents a normal DNA breaks repair and influences the individual response to x-ray low-dose. Both contrast enhancement and DNA breaks effect may therefore be caused by tungsten of the anodes of x-ray tubes.

Keywords: Contrast media; DNA; Iodine; Radiation tolerance; Tomography, x-ray computed.

Publication types

  • Editorial