Aerobic alcohol oxidation and oxygen atom transfer reactions catalyzed by a nonheme iron(ii)-α-keto acid complex

Chem Sci. 2016 Aug 1;7(8):5322-5331. doi: 10.1039/c6sc01476c. Epub 2016 Apr 25.

Abstract

α-Ketoglutarate-dependent enzymes catalyze many important biological oxidation/oxygenation reactions. Iron(iv)-oxo intermediates have been established as key oxidants in these oxidation reactions. While most reported model iron(ii)-α-keto acid complexes exhibit stoichiometric reactivity, selective oxidation of substrates with dioxygen catalyzed by biomimetic iron(ii)-α-keto acid complexes remains unexplored. In this direction, we have investigated the ability of an iron(ii) complex [(TpPh,Me)FeII(BF)] (1) (TpPh,Me = hydrotris(3-phenyl-5-methylpyrazolyl)borate and BF = monoanionic benzoylformate) to catalyze the aerobic oxidation of organic substrates. An iron-oxo oxidant, intercepted in the reaction of 1 with O2, selectively oxidizes sulfides to sulfoxides, alkenes to epoxides, and alcohols to the corresponding carbonyl compounds. The oxidant from 1 is able to hydroxylate the benzylic carbon of phenylacetic acid to afford mandelic acid with the incorporation of one oxygen atom from O2 into the product. The iron(ii)-benzoylformate complex oxidatively converts phenoxyacetic acids to the corresponding phenols, thereby mimicking the function of iron(ii)-α-ketoglutarate-dependent 2,4-dichlorophenoxyacetate dioxygenase (TfdA). Furthermore, complex 1 exhibits catalytic aerobic oxidation of alcohols and oxygen atom transfer reactions with multiple turnovers.