Composite Biomaterials as Long-Lasting Scaffolds for 3D Bioprinting of Highly Aligned Muscle Tissue

Macromol Biosci. 2018 Oct;18(10):e1800167. doi: 10.1002/mabi.201800167. Epub 2018 Aug 29.

Abstract

New biocompatible materials have enabled the direct 3D printing of complex functional living tissues, such as skeletal and cardiac muscle. Gelatinmethacryloyl (GelMA) is a photopolymerizable hydrogel composed of natural gelatin functionalized with methacrylic anhydride. However, it is difficult to obtain a single hydrogel that meets all the desirable properties for tissue engineering. In particular, GelMA hydrogels lack versatility in their mechanical properties and lasting 3D structures. In this work, a library of composite biomaterials to obtain versatile, lasting, and mechanically tunable scaffolds are presented. Two polysaccharides, alginate and carboxymethyl cellulose chemically functionalized with methacrylic anhydride, and a synthetic material, such as poly(ethylene glycol) diacrylate are combined with GelMA to obtain photopolymerizable hydrogel blends. Physical properties of the obtained composite hydrogels are screened and optimized for the growth and development of skeletal muscle fibers from C2C12 murine cells, and compared with pristine GelMA. All these composites show high resistance to degradation maintaining the 3D structure with high fidelity over several weeks. Altogether, in this study a library of biocompatible novel and totally versatile composite biomaterials are developed and characterized, with tunable mechanical properties that give structure and support myotube formation and alignment.

Keywords: 3D bioprinting; bioinks; composite hydrogels; long-lasting scaffolds; skeletal muscle.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alginates / chemistry
  • Animals
  • Biocompatible Materials / chemistry*
  • Bioprinting*
  • Cell Line
  • Gelatin / chemistry
  • Hydrogels / chemistry*
  • Mice
  • Muscle Fibers, Skeletal / cytology
  • Muscle Fibers, Skeletal / metabolism*
  • Printing, Three-Dimensional*
  • Tissue Scaffolds / chemistry*

Substances

  • Alginates
  • Biocompatible Materials
  • Hydrogels
  • Gelatin