Skip to main page content
Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar;21(3):663-675.
doi: 10.1038/s41436-018-0085-6. Epub 2018 Aug 30.

Clinical Exome Sequencing Reveals Locus Heterogeneity and Phenotypic Variability of Cohesinopathies

Affiliations
Free PMC article

Clinical Exome Sequencing Reveals Locus Heterogeneity and Phenotypic Variability of Cohesinopathies

Bo Yuan et al. Genet Med. .
Free PMC article

Abstract

Purpose: Defects in the cohesin pathway are associated with cohesinopathies, notably Cornelia de Lange syndrome (CdLS). We aimed to delineate pathogenic variants in known and candidate cohesinopathy genes from a clinical exome perspective.

Methods: We retrospectively studied patients referred for clinical exome sequencing (CES, N = 10,698). Patients with causative variants in novel or recently described cohesinopathy genes were enrolled for phenotypic characterization.

Results: Pathogenic or likely pathogenic single-nucleotide and insertion/deletion variants (SNVs/indels) were identified in established disease genes including NIPBL (N = 5), SMC1A (N = 14), SMC3 (N = 4), RAD21 (N = 2), and HDAC8 (N = 8). The phenotypes in this genetically defined cohort skew towards the mild end of CdLS spectrum as compared with phenotype-driven cohorts. Candidate or recently reported cohesinopathy genes were supported by de novo SNVs/indels in STAG1 (N = 3), STAG2 (N = 5), PDS5A (N = 1), and WAPL (N = 1), and one inherited SNV in PDS5A. We also identified copy-number deletions affecting STAG1 (two de novo, one of unknown inheritance) and STAG2 (one of unknown inheritance). Patients with STAG1 and STAG2 variants presented with overlapping features yet without characteristic facial features of CdLS.

Conclusion: CES effectively identified disease-causing alleles at the mild end of the cohensinopathy spectrum and enabled characterization of candidate disease genes.

Keywords: Atypical cohesinopathies; Clinical exome sequencing (CES); Cohesin pathway; STAG1; STAG2.

Figures

Figure 1.
Figure 1.
Cohesin complex and its underlying genetic variants. A. Schematic diagram of the cohesin complex. The components are represented in different color shapes labeled with protein names. B. Comparison of genic distributions between our clinical exome cohort and two phenotype-driven cohorts of clinically diagnosed CdLS patients (from ref. and BHCMG, respectively) . Y-axis, proportion of molecular diagnosis provided by variants in each gene; x-axis, genes; black, patients without CdLS listed as differential diagnosis; dark grey, patients with CdLS as one of the differential diagnoses; grey, CdLS cohort from ref. ; light grey, CdLS cohort from BHCMG. C. Comparison of genic variant frequencies between COSMIC and ExAC cohorts. Filled circles represent comparison between frequencies of putative LoF variants between COSMIC and ExAC; open circles represent comparison between frequencies of missense variants between COSMIC and ExAC. Y-axis, ratio bewteen frequencies of genic variants (missense or putative LoF) in COSMIC and ExAC; x-axis, genes.
Figure 2.
Figure 2.
The variants in STAG1 and STAG2. A. SNVs/indels in STAG1. B. SNVs/indels and one CNV deletion in STAG2. For panels A and B, the white segment represents the full-length protein, and the black segments represent protein domains; the missense variants are annotated above the segment, while the putative LoF variants (including the CNVs deletion in STAG2) are underneath; the variants colored in red are reported in the current study. The boxed variant (p.A638Vfs*10) in panel B is reported as a research variant. C. Diagram showing the CNV deletions overlapping STAG1 reported in the DECIPHER and current study. The red segments represent the deletions, which are divided in two groups of “DECIPHER” and “Current Study”. The bottom panel shows genes in the region. STAG1 is highlighted in red. D. Photographs showing the front and side facial profiles of Patients 8 and 9 with de novo variant in STAG2. The patient numbers and variants are listed under the photograph.

Similar articles

  • Comprehensive genetic analysis of 57 families with clinically suspected Cornelia de Lange syndrome.
    Aoi H, Mizuguchi T, Ceroni JR, Kim VEH, Furquim I, Honjo RS, Iwaki T, Suzuki T, Sekiguchi F, Uchiyama Y, Azuma Y, Hamanaka K, Koshimizu E, Miyatake S, Mitsuhashi S, Takata A, Miyake N, Takeda S, Itakura A, Bertola DR, Kim CA, Matsumoto N. Aoi H, et al. J Hum Genet. 2019 Oct;64(10):967-978. doi: 10.1038/s10038-019-0643-z. Epub 2019 Jul 23. J Hum Genet. 2019. PMID: 31337854
  • De novo heterozygous mutations in SMC3 cause a range of Cornelia de Lange syndrome-overlapping phenotypes.
    Gil-Rodríguez MC, Deardorff MA, Ansari M, Tan CA, Parenti I, Baquero-Montoya C, Ousager LB, Puisac B, Hernández-Marcos M, Teresa-Rodrigo ME, Marcos-Alcalde I, Wesselink JJ, Lusa-Bernal S, Bijlsma EK, Braunholz D, Bueno-Martinez I, Clark D, Cooper NS, Curry CJ, Fisher R, Fryer A, Ganesh J, Gervasini C, Gillessen-Kaesbach G, Guo Y, Hakonarson H, Hopkin RJ, Kaur M, Keating BJ, Kibaek M, Kinning E, Kleefstra T, Kline AD, Kuchinskaya E, Larizza L, Li YR, Liu X, Mariani M, Picker JD, Pié Á, Pozojevic J, Queralt E, Richer J, Roeder E, Sinha A, Scott RH, So J, Wusik KA, Wilson L, Zhang J, Gómez-Puertas P, Casale CH, Ström L, Selicorni A, Ramos FJ, Jackson LG, Krantz ID, Das S, Hennekam RC, Kaiser FJ, FitzPatrick DR, Pié J. Gil-Rodríguez MC, et al. Hum Mutat. 2015 Apr;36(4):454-62. doi: 10.1002/humu.22761. Epub 2015 Mar 17. Hum Mutat. 2015. PMID: 25655089 Clinical Trial.
  • Global transcriptional disturbances underlie Cornelia de Lange syndrome and related phenotypes.
    Yuan B, Pehlivan D, Karaca E, Patel N, Charng WL, Gambin T, Gonzaga-Jauregui C, Sutton VR, Yesil G, Bozdogan ST, Tos T, Koparir A, Koparir E, Beck CR, Gu S, Aslan H, Yuregir OO, Al Rubeaan K, Alnaqeb D, Alshammari MJ, Bayram Y, Atik MM, Aydin H, Geckinli BB, Seven M, Ulucan H, Fenercioglu E, Ozen M, Jhangiani S, Muzny DM, Boerwinkle E, Tuysuz B, Alkuraya FS, Gibbs RA, Lupski JR. Yuan B, et al. J Clin Invest. 2015 Feb;125(2):636-51. doi: 10.1172/JCI77435. Epub 2015 Jan 9. J Clin Invest. 2015. PMID: 25574841 Free PMC article. Clinical Trial.
  • Mutation spectrum and genotype-phenotype correlation in Cornelia de Lange syndrome.
    Mannini L, Cucco F, Quarantotti V, Krantz ID, Musio A. Mannini L, et al. Hum Mutat. 2013 Dec;34(12):1589-96. doi: 10.1002/humu.22430. Epub 2013 Sep 16. Hum Mutat. 2013. PMID: 24038889 Free PMC article. Review.
  • Exome sequencing identifies a novel EP300 frame shift mutation in a patient with features that overlap Cornelia de Lange syndrome.
    Woods SA, Robinson HB, Kohler LJ, Agamanolis D, Sterbenz G, Khalifa M. Woods SA, et al. Am J Med Genet A. 2014 Jan;164A(1):251-8. doi: 10.1002/ajmg.a.36237. Epub 2013 Oct 29. Am J Med Genet A. 2014. PMID: 24352918 Review.
See all similar articles

Cited by 9 articles

  • Delineation of phenotypes and genotypes related to cohesin structural protein RAD21.
    Krab LC, Marcos-Alcalde I, Assaf M, Balasubramanian M, Andersen JB, Bisgaard AM, Fitzpatrick DR, Gudmundsson S, Huisman SA, Kalayci T, Maas SM, Martinez F, McKee S, Menke LA, Mulder PA, Murch OD, Parker M, Pie J, Ramos FJ, Rieubland C, Rosenfeld Mokry JA, Scarano E, Shinawi M, Gómez-Puertas P, Tümer Z, Hennekam RC. Krab LC, et al. Hum Genet. 2020 May;139(5):575-592. doi: 10.1007/s00439-020-02138-2. Epub 2020 Mar 19. Hum Genet. 2020. PMID: 32193685 Free PMC article.
  • Novel JAG1 Deletion Variant in Patient with Atypical Alagille Syndrome.
    Micaglio E, Andronache AA, Carrera P, Monasky MM, Locati ET, Pirola B, Presi S, Carminati M, Ferrari M, Giamberti A, Pappone C. Micaglio E, et al. Int J Mol Sci. 2019 Dec 11;20(24):6247. doi: 10.3390/ijms20246247. Int J Mol Sci. 2019. PMID: 31835735 Free PMC article.
  • The expanding phenotypes of cohesinopathies: one ring to rule them all!
    Piché J, Van Vliet PP, Pucéat M, Andelfinger G. Piché J, et al. Cell Cycle. 2019 Nov;18(21):2828-2848. doi: 10.1080/15384101.2019.1658476. Epub 2019 Sep 13. Cell Cycle. 2019. PMID: 31516082
  • Comprehensive genetic analysis of 57 families with clinically suspected Cornelia de Lange syndrome.
    Aoi H, Mizuguchi T, Ceroni JR, Kim VEH, Furquim I, Honjo RS, Iwaki T, Suzuki T, Sekiguchi F, Uchiyama Y, Azuma Y, Hamanaka K, Koshimizu E, Miyatake S, Mitsuhashi S, Takata A, Miyake N, Takeda S, Itakura A, Bertola DR, Kim CA, Matsumoto N. Aoi H, et al. J Hum Genet. 2019 Oct;64(10):967-978. doi: 10.1038/s10038-019-0643-z. Epub 2019 Jul 23. J Hum Genet. 2019. PMID: 31337854
  • Cohesin complex-associated holoprosencephaly.
    Kruszka P, Berger SI, Casa V, Dekker MR, Gaesser J, Weiss K, Martinez AF, Murdock DR, Louie RJ, Prijoles EJ, Lichty AW, Brouwer OF, Zonneveld-Huijssoon E, Stephan MJ, Hogue J, Hu P, Tanima-Nagai M, Everson JL, Prasad C, Cereda A, Iascone M, Schreiber A, Zurcher V, Corsten-Janssen N, Escobar L, Clegg NJ, Delgado MR, Hajirnis O, Balasubramanian M, Kayserili H, Deardorff M, Poot RA, Wendt KS, Lipinski RJ, Muenke M. Kruszka P, et al. Brain. 2019 Sep 1;142(9):2631-2643. doi: 10.1093/brain/awz210. Brain. 2019. PMID: 31334757 Free PMC article.
See all "Cited by" articles

References

    1. Liu J, Krantz ID. Cornelia de Lange syndrome, cohesin, and beyond. Clin. Genet October 2009;76(4):303–314. - PMC - PubMed
    1. Losada A Cohesin in cancer: chromosome segregation and beyond. Nat. Rev. Cancer. June 2014;14(6):389–393. - PubMed
    1. Yuan B, Pehlivan D, Karaca E, et al. Global transcriptional disturbances underlie Cornelia de Lange syndrome and related phenotypes. J. Clin. Invest February 2015;125(2):636–651. - PMC - PubMed
    1. Krantz ID, McCallum J, DeScipio C, et al. Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat. Genet June 2004;36(6):631–635. - PMC - PubMed
    1. Pehlivan D, Hullings M, Carvalho CM, et al. NIPBL rearrangements in Cornelia de Lange syndrome: evidence for replicative mechanism and genotype-phenotype correlation. Genet. Med March 2012;14(3):313–322. - PMC - PubMed

Publication types

MeSH terms

Feedback