Mitochondrial dysfunction and mitophagy defect triggered by heterozygous GBA mutations
- PMID: 30160596
- PMCID: PMC6287702
- DOI: 10.1080/15548627.2018.1509818
Mitochondrial dysfunction and mitophagy defect triggered by heterozygous GBA mutations
Abstract
Heterozygous mutations in GBA, the gene encoding the lysosomal enzyme glucosylceramidase beta/β-glucocerebrosidase, comprise the most common genetic risk factor for Parkinson disease (PD), but the mechanisms underlying this association remain unclear. Here, we show that in GbaL444P/WT knockin mice, the L444P heterozygous Gba mutation triggers mitochondrial dysfunction by inhibiting autophagy and mitochondrial priming, two steps critical for the selective removal of dysfunctional mitochondria by autophagy, a process known as mitophagy. In SHSY-5Y neuroblastoma cells, the overexpression of L444P GBA impeded mitochondrial priming and autophagy induction when endogenous lysosomal GBA activity remained intact. By contrast, genetic depletion of GBA inhibited lysosomal clearance of autophagic cargo. The link between heterozygous GBA mutations and impaired mitophagy was corroborated in postmortem brain tissue from PD patients carrying heterozygous GBA mutations, where we found increased mitochondrial content, mitochondria oxidative stress and impaired autophagy. Our findings thus suggest a mechanistic basis for mitochondrial dysfunction associated with GBA heterozygous mutations. Abbreviations: AMBRA1: autophagy/beclin 1 regulator 1; BECN1: beclin 1, autophagy related; BNIP3L/Nix: BCL2/adenovirus E1B interacting protein 3-like; CCCP: carbonyl cyanide 3-chloroyphenylhydrazone; CYCS: cytochrome c, somatic; DNM1L/DRP1: dynamin 1-like; ER: endoplasmic reticulum; GBA: glucosylceramidase beta; GBA-PD: Parkinson disease with heterozygous GBA mutations; GD: Gaucher disease; GFP: green fluorescent protein; LC3B: microtubule-associated protein 1 light chain 3 beta; LC3B-II: lipidated form of microtubule-associated protein 1 light chain 3 beta; MitoGreen: MitoTracker Green; MitoRed: MitoTracker Red; MMP: mitochondrial membrane potential; MTOR: mechanistic target of rapamycin kinase; MYC: MYC proto-oncogene, bHLH transcription factor; NBR1: NBR1, autophagy cargo receptor; Non-GBA-PD: Parkinson disease without GBA mutations; PD: Parkinson disease; PINK1: PTEN induced putative kinase 1; PRKN/PARK2: parkin RBR E3 ubiquitin protein ligase; RFP: red fluorescent protein; ROS: reactive oxygen species; SNCA: synuclein alpha; SQSTM1/p62: sequestosome 1; TIMM23: translocase of inner mitochondrial membrane 23; TOMM20: translocase of outer mitochondrial membrane 20; VDAC1/Porin: voltage dependent anion channel 1; WT: wild type.
Keywords: Autophagy; Parkinson disease; glucocerebrosidase; mitochondrial dysfunction; mitophagy.
Figures
Similar articles
-
Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles.Autophagy. 2021 Feb;17(2):385-401. doi: 10.1080/15548627.2020.1725377. Epub 2020 Feb 12. Autophagy. 2021. PMID: 32048886 Free PMC article. Review.
-
Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys.Autophagy. 2019 Dec;15(12):2142-2162. doi: 10.1080/15548627.2019.1615822. Epub 2019 May 22. Autophagy. 2019. PMID: 31066324 Free PMC article.
-
BNIP3L-mediated mitophagy is required for mitochondrial remodeling during the differentiation of optic nerve oligodendrocytes.Autophagy. 2021 Oct;17(10):3140-3159. doi: 10.1080/15548627.2020.1871204. Epub 2021 Jan 19. Autophagy. 2021. PMID: 33404293 Free PMC article.
-
Mitochondria ROS and mitophagy in acute kidney injury.Autophagy. 2023 Feb;19(2):401-414. doi: 10.1080/15548627.2022.2084862. Epub 2022 Jun 9. Autophagy. 2023. PMID: 35678504 Free PMC article.
-
Glucocerebrosidase and Parkinson disease: Recent advances.Mol Cell Neurosci. 2015 May;66(Pt A):37-42. doi: 10.1016/j.mcn.2015.03.013. Epub 2015 Mar 20. Mol Cell Neurosci. 2015. PMID: 25802027 Free PMC article. Review.
Cited by
-
DJ-1 protects cell death from a mitochondrial oxidative stress due to GBA1 deficiency.Genes Genomics. 2024 Mar 9. doi: 10.1007/s13258-024-01506-w. Online ahead of print. Genes Genomics. 2024. PMID: 38460098
-
Lysosomal storage, impaired autophagy and innate immunity in Gaucher and Parkinson's diseases: insights for drug discovery.Philos Trans R Soc Lond B Biol Sci. 2024 Apr 8;379(1899):20220381. doi: 10.1098/rstb.2022.0381. Epub 2024 Feb 19. Philos Trans R Soc Lond B Biol Sci. 2024. PMID: 38368939 Free PMC article. Review.
-
Impaired neuron differentiation in GBA-associated Parkinson's disease is linked to cell cycle defects in organoids.NPJ Parkinsons Dis. 2023 Dec 18;9(1):166. doi: 10.1038/s41531-023-00616-8. NPJ Parkinsons Dis. 2023. PMID: 38110400 Free PMC article.
-
Global Proteomics for Identifying the Alteration Pathway of Niemann-Pick Disease Type C Using Hepatic Cell Models.Int J Mol Sci. 2023 Oct 27;24(21):15642. doi: 10.3390/ijms242115642. Int J Mol Sci. 2023. PMID: 37958627 Free PMC article.
-
Axonal Transport of Lysosomes Is Unaffected in Glucocerebrosidase-Inhibited iPSC-Derived Forebrain Neurons.eNeuro. 2023 Oct 10;10(10):ENEURO.0079-23.2023. doi: 10.1523/ENEURO.0079-23.2023. Print 2023 Oct. eNeuro. 2023. PMID: 37816595 Free PMC article.
References
-
- Schapira AH. Mitochondria in the aetiology and pathogenesis of Parkinson’s disease. Lancet Neurol. 2008;7(1):97–109. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous
