Observations on the reflex properties of a mouse spinal cord preparation in vitro are reported. The findings show that the synaptically evoked, GABA-mediated, discharge of action potentials in primary afferent fibres, monitored as the dorsal root reflex, may lead to the excitation of motoneurones. Subthreshold, bicuculline-sensitive increases in motoneuronal excitability, followed by prolonged inhibition, may be seen in preparations in which the delayed reflex is not seen. Thus, primary afferent depolarization may both increase motoneuronal excitability and also cause presynaptic inhibition of afferent input.